基于TF-IDF及朴素贝叶斯的短文本分类

概括:朴素贝叶斯分类器(Naïve Bayes classifier)是一种相当简单常见但是又相当有效的分类算法,在监督学习领域有着很重要的应用。朴素贝叶斯是建立在“全概率公式”的基础下的,由已知的尽可能多的事件A、B求得的P(A|B)来推断未知P(B|A),是的有点玄学的意思,敲黑板!!!

优点:

  1. 模型训练使用TF-IDF对训练数据做词频及概率统计;
  2. 分类使用朴素贝叶斯计算所有类目的概率;
  3. 适用于电商的短文本分类,加入部分人工干预,top3准确率可达到95%左右;
  4. 分类预测完全可解释,不存在神经网络黑盒,但比较依赖分词效果;
  5. 训练数据类目下数据不均衡基本不会影响模型准确率。

缺点:

  1. 比较依赖分词效果;
  2. 大规模分类任务模型文件较大(与神经网络相比)。

tf-idf经常被用于提取文章的关键词(Aoutomatic Keyphrase extraction),完全不加任何的人工干预,就可以达到很好的效果,而且它简单到都不需要高等数学,普通人10分种就可以理解,那我们首先来介绍下TF-IDF算法。

TF-IDF

例如,假定现在有一篇比较长的文章《致全世界儿童的一封公开信》我们准备用计算机提取它的关键词。一个简单的思路,就是找到出现次数最多的词。如果这个词很重要,它应该在这篇文章中出现很多次。于是,我们进行“词频”(Term Frequency,缩写为TF)统计,不过你可能会猜到,出现最多的词是---“的”、“是”、“在”----这一类最常用的词。它们叫做“停用词”(stop words)表示对提取结果毫无帮助、必须要过滤掉的词,这是你可能会问,从“文章”到“词”你是怎么转换的,如果你知道中文分词,就应该不会问这个问题了,中文分词有很多模式,通常是采用HMM(隐马尔科夫模型 ),一个好的分词系统非常复杂,想要理接可以点击HMM的进行了解,不过现在也有很多系统使用深度学习的方法NER(lstm+crf)来做物品词识别,这里就不一一介绍了;ok,回到之前所说的,我们可能发现“儿童”、“权力”、“心理健康”、“隐私”、“人口流动”、“冲突”、“贫困”、“疾病”、“食物”、“饮用水”、“联合国”这几个词出现的次数一样多。这是不是意味着,作为关键词,他们的重要性是一样的?

显然不是这样。因为“联合国”是很常见的词,相对而言“心理健康”、“人口流动”、“冲突”不那么常见。如果这四个词出现的次数一样多,有理由认为,“心理健康”、“人口流动”、“冲突”的重要程度要大于“联合国”,在关键词排序上“心理健康”、“人口流动”、“冲突”应该排在“联合国”的前面。

所以,我们需要一个重要性调整系数,衡量一个词是不是很常见。如果这个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。这个调整系数就是在词频统计的基础上,要对每个词分配一个“重要性”权重。这个权重叫做“逆文档频率”(Inverse Document Frequency,缩写为“IDF”),它的大小与一个词的常见程度成反比。

知道了“词频”(TF)和“逆文档频率”(IDF)以后,将这两个值相乘,就得到了一个词的TF-IDF值。某个词对文章的重要性越高,它的TF-IDF值就越大。所以,排在最前面的几个词,就是这篇文章的关键词;如果应用到文本分类中,把一类中所有的tf-idf值高的词和tf-idf值 提取出并来,这就是此类的特征模型。

总结一下:

  • TF = (某个词在文档中出现的次数) / (文档中的总词数)
  • IDF = log(语料中文档总数 / 包含该词的文档数+1) 分母加1 避免分母为0
  • TF-IDF = TF*IDF


朴素贝叶斯推断

  朴素贝叶斯理论看起来很高大上,但实际上并没有运用很高深的数学知识,即便没有学习过高数也完全可以理解,给我的感觉就是简单但有些绕,接下来我将用尽可能直白的话解释下朴素贝叶斯理论。

贝叶斯推断是一种统计学方法,用来估计统计量的某种性质,与其他的统计学推断不同,它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不断修正。

这里可能有人会问,tf-idf就能用来做分类了,为什么还要朴素贝叶斯?是的,问得好,tf-idf确实可以进行分类,但朴素贝叶斯会有效增强准确率削弱错误率(如果你之前了解过深度学习,朴素贝叶斯起到的效果有点像softmax),朴素贝叶斯是建立在“全概率公式”的基础下的,由已知的尽可能多的事件A、B求得的P(A|B)来推断未知P(B|A),是的有点玄学的意思,敲黑板!!!  这也就决定了它和tf-idf这种统计学的概率的本质区别。

贝叶斯定理:要理解贝叶斯推断,首先要知道贝叶斯定理。后者实际上是计算“条件概率”的公式。

所谓“条件概率”(Conditional probability),就是指事件B发生的情况下,事件A发生的概率,用P(A|B)来表示,嗯,没错就是上图哪个公式。上学那会老师这公式都要背熟的,不然数学第二个简答题就只能写个解了,但是我们今天来看一下这个公式的推理过程:

原文地址:https://www.cnblogs.com/go-ahead-wsg/p/11669042.html

时间: 2024-11-05 21:54:29

基于TF-IDF及朴素贝叶斯的短文本分类的相关文章

基于朴素贝叶斯算法的情感分类

环境 win8, python3.7, jupyter notebook 正文 什么是情感分析?(以下引用百度百科定义) 情感分析(Sentiment analysis),又称倾向性分析,意见抽取(Opinion extraction),意见挖掘(Opinion mining),情感挖掘(Sentiment mining),主观分析(Subjectivity analysis),它是对带有情感色彩的主观性文本进行分析.处理.归纳和推理的过程,如从评论文本中分析用户对"数码相机"的&qu

【机器学习实验】使用朴素贝叶斯进行文本的分类

引言 朴素贝叶斯由贝叶斯定理延伸而来的简单而强大的概率模型,它根据每个特征的概率确定一个对象属于某一类别的概率.该方法基于一个假设,所有特征需要相互独立,即任一特征的值和其他特征的值没有关联关系. 虽然这种条件独立的假设在许多应用领域未必能很好满足,甚至是不成立的.但这种简化的贝叶斯分类器在许多实际应用中还是得到了较好的分类精度.训练模型的过程可以看作是对相关条件概率的计算,它可以用统计对应某一类别的特征的频率来估计. 朴素贝叶斯最成功的一个应用是自然语言处理领域,自然语言处理的的数据可以看做是

Bayes 朴素贝叶斯实现垃圾邮件分类

本文选取了25封垃圾邮件和25封正常邮件,随机产生了10组测试集和40组训练集,使用朴素贝叶斯方法实现了垃圾邮件的分类. Bayes公式   遍历每篇文档向量,扫描所有文档的单词,合并集合去重 ,并生成最终的词汇表 # 创建词汇表 # 输入:dataSet已经经过切分处理 # 输出:包含所有文档中出现的不重复词的列表 def createVocabList(dataSet):  # 文本去重,创建词汇表 vocabSet = set([])  # 创建一个空的集合 for document in

朴素贝叶斯和逻辑回归分类

朴素贝叶斯 用p1(x, y)表示(x, y)属于类别1的概率,P2(x, y)表示(x, y)属于类别2的概率: 如果p(c1|x, y) > P(c2|x, y), 那么类别为1 如果p(c1|x, y) < P2(c2|x, y), 那么类别为2 根据贝叶斯公式: p(c|x, y) = (p(x, y|c) * p(c)) / p(x, y) (x, y)表示要分类的特征向量, c表示类别 因为p(x, y),对不同类别的数值是一样的,只需计算p(x, y|c) 和 p(c) p(c)

python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类

实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on

&amp;lt;Machine Learning in Action &amp;gt;之二 朴素贝叶斯 C#实现文章分类

def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = ones(numWords); p1Num = ones(numWords) #change to ones() p0Denom = 2.0; p1Denom = 2.0 #c

机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

4.1 基于贝叶斯决策理论的分类方法 朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯决策理论的核心思想:选择具有最高概率的决策. 4.2 条件概率 4.3 使用条件概率来分类 4.4 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法 5.测试算法 6.使用算法 朴素贝叶斯分类器中的另一个假设是,每个特征同等重要. 4.5 使用Python进行文本分类

《机器学习实战》学习笔记:基于朴素贝叶斯的分类方法

概率是许多机器学习算法的基础,在前面生成决策树的过程中使用了一小部分关于概率的知识,即统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,得到特征取该值的概率. 目录: 一.基于贝叶斯理论的分类方法 二.关于朴素贝叶斯的应用场景 三.基于Python和朴素贝叶斯的文本分类 1.准备数据 2.训练算法 3.测试算法 四.小结 以下进入正文: 一.基于贝叶斯理论的分类方法 假设有两类数据组成的数据集如下: 其中,假设两个概率分布的参数已知,并用p1(x,y)表示当前数据点(x,y)属于类

第四章:基于概率论的分类方法: 朴素贝叶斯

本章内容□使用概率分布进行分类□学习朴素贝叶斯分类器□解析RSS源数据口使用朴素贝叶斯来分析不同地区的态度 前两章我们要求分类器做出艰难决策,给出“该数据实例属于哪一类”这类问题的明确答案.不过,分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值.       概率论是许多机器学习算法的基础,所以深刻理解这一主题就显得十分重要.第3章在计算特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值的次数,然后除以数据集的