tensorflow张量排序

本篇记录一下TensorFlow中张量的排序方法

tf.sort和tf.argsort

# 声明tensor a是由1到5打乱顺序组成的
a = tf.random.shuffle(tf.range(5))
# 打印排序后的tensor
print(tf.sort(a,direction=‘DESCENDING‘).numpy())
# 打印从大到小排序后,数字对应原来的索引
print(tf.argsort(a,direction=‘DESCENDING‘).numpy())
index = tf.argsort(a,direction=‘DESCENDING‘)
# 按照索引序列取值
print(tf.gather(a,index))

# 返回最大的两个值信息
res = tf.math.top_k(a,2)
# indices返回索引
print(res.indices)
# values返回值
print(res.values)

计算准确率实例:

# 定义模型输出预测概率
prob = tf.constant([[0.1,0.2,0.7],[0.2,0.7,0.1]])
# 定义y标签
target = tf.constant([2,0])
# 求top3的索引
k_b = tf.math.top_k(prob,3).indices
# 将矩阵进行转置,即把top-1,top-2,top-3分组
print(tf.transpose(k_b,[1,0]))
# 将y标签扩展成与top矩阵相同维度的tensor,方便比较
target = tf.broadcast_to(target,[3,2])

# 实现求准确率的方法
def accuracy(output,target,topk=(1,)):
    maxk = max(topk)
    batch_size = target.shape[0]

    pred = tf.math.top_k(output,maxk).indices
    pred = tf.transpose(pred,perm=[1,0])
    target_ = tf.broadcast_to(target,pred.shape)
    correct = tf.equal(pred,target_)

    res = []
    for k in topk:
        correct_k = tf.cast(tf.reshape(correct[:k],[-1]),dtype=tf.float32)
        correct_k = tf.reduce_sum(correct_k)
        acc = float(correct_k/batch_size)
        res.append(acc)
    return res
import  tensorflow as tf
import  os

os.environ[‘TF_CPP_MIN_LOG_LEVEL‘] = ‘2‘
tf.random.set_seed(2467)

def accuracy(output, target, topk=(1,)):
    maxk = max(topk)
    batch_size = target.shape[0]

    pred = tf.math.top_k(output, maxk).indices
    pred = tf.transpose(pred, perm=[1, 0])
    target_ = tf.broadcast_to(target, pred.shape)
    # [10, b]
    correct = tf.equal(pred, target_)

    res = []
    for k in topk:
        correct_k = tf.cast(tf.reshape(correct[:k], [-1]), dtype=tf.float32)
        correct_k = tf.reduce_sum(correct_k)
        acc = float(correct_k* (100.0 / batch_size) )
        res.append(acc)

    return res

output = tf.random.normal([10, 6])
output = tf.math.softmax(output, axis=1)
target = tf.random.uniform([10], maxval=6, dtype=tf.int32)
print(‘prob:‘, output.numpy())
pred = tf.argmax(output, axis=1)
print(‘pred:‘, pred.numpy())
print(‘label:‘, target.numpy())

acc = accuracy(output, target, topk=(1,2,3,4,5,6))
print(‘top-1-6 acc:‘, acc)

原文地址:https://www.cnblogs.com/zdm-code/p/12231585.html

时间: 2024-10-01 04:51:24

tensorflow张量排序的相关文章

tensorflow张量限幅

本篇内容有clip_by_value.clip_by_norm.gradient clipping 1.tf.clip_by_value a = tf.range(10) print(a) # if x<a res=a,else x=x print(tf.maximum(a,2)) # if x>a,res=a,else x=x print(tf.minimum(a,8)) # 综合maximum和minimum两个函数的功能,指定上下限 print(tf.clip_by_value(a,2,

三分钟快速上手TensorFlow 2.0 再学习总结回顾

https://www.bilibili.com/video/av89601743 哔哩哔哩上面有一位道友专门针对<简单粗暴>分享了他的个人经验,我也跟着复习了一遍,挑一些重点的记录一下 这是一个工程师的角度,从开发的角度理解t f的构建 其实求梯度.导数.斜率都差不多的概念 然后是求他们的损失函数,我们的目标就是减少损失函数 tf里面主要就是张量的运算,costant和varieble with...as..其实相当于一个记录器,之后就可以直接用这个记录器里面的内容 对于线性的来说,x和y是

TensorFlow和深度学习新手教程(TensorFlow and deep learning without a PhD)

前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络.并把其PPT的參考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入须要FQ,我也顺带巩固下,做个翻译.不好之处请包括指正. 当然须要安装python,教程推荐使用python3.假设是Mac,能够參考博主的另外两片博文,Mac下升级python2.7到python3.6, Mac安装tensorflow1.0 好多专业词

TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)

前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把其PPT的参考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep learning,without a PhD> 当然登入需要翻墙,我也顺带巩固下,做个翻译,不好之处请包含指正. 当然需要安装python,教程推荐使用python3.如果是Mac,可以参考博主的另外两片博文,Mac下升级python2.7到python3.6, Mac安装tensorflow1.0 好多专业词

深度学习之tensorflow (一)

一.TensorFlow简介 1.TensorFlow定义: tensor  :张量,N维数组 Flow   :  流,基于数据流图的计算 TensorFlow : 张量从图像的一端流动到另一端的计算过程,是将复杂的数据结     构传输至人工智能神经网络中进行分析和处理的过程. 2. 工作模式:     图graphs表示计算任务,图中的节点称之为op(operation) ,一个 op可以获得0个      或多个张量(tensor),通过创建会话(session)对象来执行计算,产生0个或

Tensorflow 函数学习笔记

## tf.Variable(??)    创建tf变量 ## tf.matmul(w,x)       矩阵乘法 w = tf.Variable([[0.5,1.0]]) x = tf.Variable([[2.0],[1.0]]) y = tf.matmul(w, x) init_op = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init_op) print (y.eval()) #tf中显示

tfboys——tensorflow模块学习(四)

tensorflow功能函数 tf.abs 计算张量的绝对值 abs ( x , name = None ) 定义在:tensorflow/python/ops/math_ops.py. 参考指南:数学>基本数学函数 计算张量的绝对值. 给定一个实数的张量 x,该操作返回一个包含每个元素的绝对值的张量 x.例如,如果 x 是输入元素,y 是输出元素,则此操作将计算\\(y = | x | \\). ARGS: x:一个类型为 float32,float64,int32,或 int64 的 Ten

TensorFlow.org教程笔记(二) DataSets 快速入门

本文翻译自www.tensorflow.org的英文教程. tf.data 模块包含一组类,可以让你轻松加载数据,操作数据并将其输入到模型中.本文通过两个简单的例子来介绍这个API 从内存中的numpy数组读取数据. 从csv文件中读取行 基本输入 对于刚开始使用tf.data,从数组中提取切片(slices)是最简单的方法. 笔记(1)TensorFlow初上手里提到了训练输入函数train_input_fn,该函数将数据传输到Estimator中: def train_input_fn(fe

Python玩转人工智能最火框架 TensorFlow应用实践 学习 教程

随着 TensorFlow 在研究及产品中的应用日益广泛,很多开发者及研究者都希望能深入学习这一深度学习框架.而在昨天机器之心发起的框架投票中,2144 位参与者中有 1441 位都在使用 TensorFlow 框架,是所有框架中使用率最高的.但 TensorFlow 这种静态计算图有一定的学习成本,因此也阻挡了很多准备入坑的初学者.本文介绍了学习 TensorFlow 的系列教程,旨在通过简单的理论与实践帮助初学者一步步掌握 TensorFlow 的编程技巧. 这一系列教程分为 6 部分,从为