Bag of Tricks for Image Classification with Convolutional Neural Networks

这篇文章来自李沐大神团队,使用各种CNN tricks,将原始的resnet在imagenet上提升了四个点。记录一下,可以用到自己的网络上。如果图片显示不了,点击链接观看

baseline

model: resnet50

transform部分使用pytorch的torchvision接口

train transform:

  1. transforms.RandomResizedCrop(224)
  2. transforms.RandomHorizontalFlip(0.5)
  3. transforms.ColorJitter(brightness=0.4, ntrast=0.4, saturation=0.4)
  4. PCA noise ——— normal distribution N(0, 0.1)
  5. transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

val transform:

  1. transforms.Resize(256)
  2. transforms.CenterCrop(224)

parameters initialized:

conv and lr: Xavier uniformly [-a, a], a = \(\sqrt{6 /\left(d_{i n}+d_{o u t}\right)}\),\(d_{in}\) and \(d_{out}\) are the input and output channel sizes
bn: \(\gamma\) = 1, \(\beta\) = 0

optimizer:NAG
epoch:120
lr: 0.1, divided by 10 every 30 epochs
batchsize: 256

Tricks

Efficient Training

Large batch training

  1. 大的batch减小了梯度的噪声,可以适当放大学习率。论文中调整为0.1 X b/256.
  2. 网络初始的时候,参数离目标很远,较大的学习率会发生数值不稳定,应使用较小的学习线性递增到设置的lr,比如m个batch(5个epoch),初始学习率为n,第i个batch的学习率为i*n/m.
  3. 把每一个resnet block最后一个bn层的\(\gamma\)设置为0
  4. 只有weight decay,没有bias decay

Low precision training

将FP32换成FP16可以不丧失精度使训练更快,技巧是存储所有参数和激活使用FP16来计算梯度。同时,FP32中的所有参数都有一个副本,用于参数更新。

result

efficient是bs1024 + FP16的结果,更快更好。

以下是加上五个变量的实验结果,加入LR warmup和Zero \(\gamma\)效果明显,另外两个作用不是很大。

Model Tweaks

文章对原始的resnet block的下采样层进行了改动,共有三个版本。

以下是原始的resnet结构图:

三个版本对downsample的改动如下:

Resnet-B: 原始的downsample是在conv1x1进行stride为2的下采样,这样会损失3/4的信息,resnet-B则不会。

Resnet-C: 这个调整最早来自于Inception-v2,引入1x1可以减小计算量和参数,作者将前两层的输出通道变为32来达到减小计算量的效果。

Resnet-D: resnet-b的pathB分支还是会损失3/4的信息,通过引入avgpool来改善这种影响。

result

略微提高计算量,Resnet-D版本差不多提高一个点。

Training Refinements

Cosine Learning Rate Decay

将学习率变为余弦函数的曲线,公式如下:
\[
\eta_{t}=\frac{1}{2}\left(1+\cos \left(\frac{t \pi}{T}\right)\right) \eta
\]
\(n\)是初始学习率,t是第t个batch,T是总batch数,与stepLR的曲线如下所示,开始的直线是LR warmup,可以看到余弦退火精度要高一些:

label smooth:原始的label是one-hot标签,过于苛刻,label smooth将标签进行软化,其他类别也需要有低的概率,变为如下所示的公式,一般\(\varepsilon\)的取值为0.1.
\[
q_{i}=\left\{\begin{array}{ll}{1-\varepsilon} & {\text { if } i=y} \\ {\varepsilon /(K-1)} & {\text { otherwise }}\end{array}\right.
\]
Knowledge Distillation:知识蒸馏是使用一个老师模型来训练当前模型,帮助当前模型训练的更好,老师模型一般使用精确度更好的预训练模型,文章是使用Resnet152作为老师模型来训练resnet50,通过约束当前模型的softmax输出与老师模型保持一致来提高当前模型。所以损失函数变成下面的形式:
\[
\ell(p, \operatorname{softmax}(z))+T^{2} \ell(\operatorname{softmax}(r / T), \operatorname{softmax}(z / T))
\]
Mixup Training:这是一种新式的数据增强策略,随机采样两个样本(可不同类别),进行权重插值(x是图像,y是标签),公式如下:
\[
\begin{aligned} \hat{x} &=\lambda x_{i}+(1-\lambda) x_{j} \\ \hat{y} &=\lambda y_{i}+(1-\lambda) y_{j} \end{aligned}
\]
\(\lambda\)的范围是0到1,一般采样beta分布。

result

可以看到cosine decay,label smooth和mixup还是很有用的,对模型提高不少,但Knowledge Distillation不同模型效果不同,还得进行实验。

参考

  1. https://arxiv.org/abs/1812.01187

原文地址:https://www.cnblogs.com/fydeblog/p/12001296.html

时间: 2024-11-09 03:17:31

Bag of Tricks for Image Classification with Convolutional Neural Networks的相关文章

训练技巧详解【含有部分代码】Bag of Tricks for Image Classification with Convolutional Neural Networks

训练技巧详解[含有部分代码]Bag of Tricks for Image Classification with Convolutional Neural Networks 置顶 2018-12-11 22:07:40 Snoopy_Dream 阅读数 1332更多 分类专栏: 计算机视觉 pytorch 深度学习tricks 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/e01528

Notes on Large-scale Video Classification with Convolutional Neural Networks

Use bigger datasets for CNN in hope of better performance. A new data set for sports video classification: sports-1M. CNN in one frame is about the same as many frames. CNN is good at image but not modeling temporal sequences. The result is not good.

ImageNet?Classification?with?Deep?Convolutional?Neural?Networks?阅读笔记 转载

ImageNet Classification with Deep Convolutional Neural Networks 阅读笔记 (2013-07-06 22:16:36) 转载▼ 标签: deep_learning imagenet hinton 分类: 机器学习 (决定以后每读一篇论文,都将笔记记录于博客上.) 这篇发表于NIPS2012的文章,是Hinton与其学生为了回应别人对于deep learning的质疑而将deep learning用于ImageNet(图像识别目前最大的

[转]XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks

感谢: XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks XNOR-Net ImageNet Classification Using Binary Convolutional Neural Networks 本人想把算法思想实现在mxnet上(不单纯是一个layer),有意愿一起的小伙伴可以联系我,本人qq(邮箱):564326047(@qq.com),或者直接在下面留言. 一.Introdu

读convolutional Neural Networks Applied to House Numbers Digit Classification 的收获。

本文以下内容来自读论文以后认为有价值的地方,论文来自:convolutional Neural Networks Applied to House Numbers Digit Classification . 对于房门号的数字识别问题,文中提出的方法是基于卷积神经网络的,卷积神经网络集特征提取与目标分类于一体,这一点有别于传统的识别方法(传统方法中一般都是基于人工设计的特征提取器,然后把提取到的特征输入给分类器). 文中在传统的卷积神经网络基础上有两点改进: 第一:pooling层,传统的方法的

【Papers】《ImageNet Classification with Deep Convolutional Neural Networks》阅读笔记

参考资料: ImageNet Classification with Deep Convolutional Neural Networks,Alex Krizhevsky,Ilya Sutskever,Geoffrey E. Hinton http://www.cnblogs.com/tornadomeet/p/3258122.html http://blog.sina.com.cn/s/blog_890c6aa30100z7su.html

ImageNet Classification with Deep Convolutional Neural Networks(转载)

ImageNet Classification with Deep Convolutional Neural Networks 阅读笔记 (决定以后每读一篇论文,都将笔记记录于博客上.) 这篇发表于NIPS2012的文章,是Hinton与其学生为了回应别人对于deep learning的质疑而将deep learning用于ImageNet(图像识别目前最大的数据库)上,最终取得了非常惊人的结果,其结果相对原来的state of the art好了非常多(前5选错误率由25%降低为17%). I

2016.4.5 ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf 这个网络也叫做alexnet,因为第一作者的名字是alex,这是个经典的网络,因为这个网络在12年的时候在imagenet上面提升了十个点的准确率.第三作者是hinton

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有