泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

张宁 Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation

基于无人机的向下平面人群密度估计的几何和物理约束
https://arxiv.org/abs/1803.08805

Weizhe Liu, Krzysztof Lis, Mathieu Salzmann, Pascal Fua

Abstract—State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density in the image plane. While useful for this purpose, this imageplane density has no immediate physical meaning because it is subject to perspective distortion. This is a concern in sequences acquired by drones because the viewpoint changes often. This distortion is usually handled implicitly by either learning scaleinvariant features or estimating density in patches of different sizes, neither of which accounts for the fact that scale changes must be consistent over the whole scene.

In this paper, we explicitly model the scale changes and reason in terms of people per square-meter. We show that feeding the perspective model to the network allows us to enforce global scale consistency and that this model can be obtained on the ?y from the drone sensors. In addition, it also enables us to enforce physically-inspired temporal consistency constraints that do not have to be learned. This yields an algorithm that outperforms state-of-the-art methods in inferring crowd density from a moving drone camera especially when perspective effects are strong.

在拥挤场景中对人进行计数的最新方法依赖于深层网络来估计图像平面中的人群密度。尽管对于此目的很有用,但此像平面密度没有直接的物理意义,因为它会受到透视变形的影响。这是无人机获取序列中的一个问题,因为视点经常变化。 通常通过学习尺度不变特征或估计不同大小的面片中的密度来隐式处理这种失真,这两者都不能说明在整个场景中尺度变化必须一致的事实。

在本文中,我们以人均每平方米为单位对规模变化和原因进行显式建模。我们表明,将透视图模型馈送到网络可以使我们增强全局范围的一致性,并且可以从无人机传感器上以飞行的形式获得此模型。此外,它还使我们能够执行不必学习的,受到物理启发的时间一致性约束。 这产生了一种算法,该算法在从移动的无人机摄像机推断人群密度方面表现出超过最新方法,尤其是在透视效果很强的情况下。

原文地址:https://www.cnblogs.com/feifanrensheng/p/11967232.html

时间: 2024-10-10 05:36:54

泡泡一分钟:Geometric and Physical Constraints for Drone-Based Head Plane Crowd Density Estimation的相关文章

泡泡一分钟:GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mapping

张宁  GEN-SLAM - Generative Modeling for Monocular Simultaneous Localization and Mappinghttps://arxiv.org/abs/1902.02086 Punarjay Chakravarty, Praveen Narayanan and Tom Roussel Abstract—We present a Deep Learning based system for the twin tasks of loca

泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合粒子滤波方法 Shuxia Gu, Zhiyu Xiang*, Yi Zhang and Qi Qian Abstract-Robust localization is a prerequisite for autonomous vehicles. Traditional visual locali

泡泡一分钟:Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle

Motion Planning for a Small Aerobatic Fixed-Wing Unmanned Aerial Vehicle Joshua Levin, Aditya Paranjape, and Meyer Nahon 小型特技飞行无人机的运动规划 https://pan.baidu.com/s/1xB6WxNMEo-SNAApsNT0GQQ Abstract- A motion planner is developed for guiding a small aeroba

泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs

作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射.理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即.因此,当四旋翼飞行器发射时,我们可以检测到测量的加速度下降到与当前施加的推力相对应的值. B. Recovery and Initialization Steps 张宁    Perception-aware Receding Horizon Navigation for MAVs    "链接:https://pan.baidu.com/s

泡泡一分钟:Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System

Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System https://arxiv.org/abs/1809.05477 Abstract: Project AutoVision aims to develop localization and 3D scene perception capabilities for a self-

泡泡一分钟:eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications

eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications 链接:https://pan.baidu.com/s/1493U3I3mO5TVUB7ne9jjaw 提取码:ivj5 Robin Kerstens1, Dennis Laurijssen2, Jan Steckel3 Abstract—Many popular advanced sonar systems provide acc

泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions

张宁  Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重复任务执行学习不确定环境中的运动规划策略链接:https://pan.baidu.com/s/1TlSJn0fXuKEwZ9vts4xA6g 提取码:jwsd 复制这段内容后打开百度网盘手机App,操作更方便哦 Florence Tsang, Ryan A. Macdonald, and Steph

泡泡一分钟:Context-Aware Modelling for Augmented Reality Display Behaviour

张宁 Context-Aware Modelling for Augmented Reality Display Behaviour链接:https://pan.baidu.com/s/1RpX6ktZCTGpQ7okksw5TUA&shfl=sharepset 提取码:xttr Abstract—Current surgical augmented reality (AR) systems typically employ an on-demand display behaviour, whe

泡泡一分钟:Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter

张宁 Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter 使用自适应无味卡尔曼滤波器进行姿态估计链接:https://pan.baidu.com/s/1TNeRUK84APiwNv1uyQfhHg 提取码:pbdt This paper presents the robust Adaptive unscented Kalman ?lter (RAUKF) for attitude estimation. Sin