GAN生成式对抗网络的原理

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型

GAN两个核心模块

GAN核心是两个模块。

1.生成器模块 --generator

2.判别器模块--desciminator

GAN通俗原理解释

为了通俗的解释GAN原理,可以类比为伪造货币的例子(这个比方纯粹为了解释)

现在有个伪造货币的任务。

你有一堆真实的货币,一个可以不断提高鉴别能力的鉴定货币真伪的设备,还有一个可以提高伪造能力的伪造货币的设备。

1.我们继续不断的强化鉴定设备的 鉴定能力,尽全力让他能将真币识别为真币,将价比识别为价币。(鉴定结果是一个0到1之间的概率。越接近0,说明鉴定结果越是假币)

2.我们让伪造设备不断的伪造假币,将假币真币混合在一起,交给鉴定设备鉴定。根据鉴定结果(概率),我们不断改善伪造设备,使伪造的假币被鉴定为真的概率持续提高。

现在形成了矛与盾的局面。一个伪造货币设备,和鉴定货币真伪设备的持续较量,两者都不断的从对抗中吸取经验、教训,提高自己。

两者不断的对抗,两者的能力都持续不断的提高,最终我们得到了一个货币鉴定专家,一个伪造货币天才,而且这个伪造货币天才,学习能力超级强。将它制造的假币和真币混在一起之后,我们这个鉴定专家,已经区分不出来,都认为是真的货币 了。

那么,现在伪造货币设备伪造的货币,在市面上就可以认为是真的了。因为,我们那个高级的鉴别设备,都已经无法区分他是否是真的,更不要说其他普通的鉴定设备了。

GAN原理总结

如上所述,GAN生成式对抗网络的原理即:在一个不断提高判断能力的判断器的持续反馈下,不断改善生成器的生成参数,直到生成器生成的结果能够通过判断器的判断。

欢迎转载,转载请注明出处。欢迎沟通交流: [email protected])

原文地址:https://www.cnblogs.com/panfengde/p/10016181.html

时间: 2024-11-03 10:59:42

GAN生成式对抗网络的原理的相关文章

不要怂,就是GAN (生成式对抗网络) (五):无约束条件的 GAN

GAN 这个领域发展太快,日新月异,各种 GAN 层出不穷,前几天看到一篇关于 Wasserstein GAN 的文章,讲的很好,在此把它分享出来一起学习:https://zhuanlan.zhihu.com/p/25071913.相比 Wasserstein GAN ,我们的 DCGAN 好像低了一个档次,但是我们伟大的教育家鲁迅先生说过:"合抱之木,生于毫末:九层之台,起于累土:千里之行,始于足下",(依稀记得那大概是我 7 - 8 岁的时候,鲁迅先生依偎在我身旁,带着和蔼可亲切的

不要怂,就是GAN (生成式对抗网络) (二)

前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条件的 GAN,和不加约束条件的GAN,我们先来搭建一个简单的 MNIST 数据集上加约束条件的 GAN. 首先下载数据:在  /home/your_name/TensorFlow/DCGAN/ 下建立文件夹 data/mnist,从 http://yann.lecun.com/exdb/mnist/

不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保存训练过程中采样器的采样图片,在 train.py 中输入如下代码: # -*- coding: utf-8 -*- import tensorflow as tf import os from read_data import * from utils import * from ops impo

生成式对抗网络GAN 的研究进展与展望

生成式对抗网络GAN的研究进展与展望.pdf 摘要: 生成式对抗网络GAN (Generative adversarial networks) 目前已经成为人工智能学界一个热门的研究方向. GAN的基本思想源自博弈论的二人零和博弈, 由一个生成器和一个判别器构成, 通过对抗学习的方式来训练. 目的是估测数据样本的潜在分布并生成新的数据样本. 在图像和视觉计算.语音和语言处理.信息安全.棋类比赛等领域, GAN 正在被广泛研究,具有巨大的应用前景. 本文概括了GAN 的研究进展, 并进行展望. 在

学习笔记TF051:生成式对抗网络

生成式对抗网络(gennerative adversarial network,GAN),谷歌2014年提出网络模型.灵感自二人博弈的零和博弈,目前最火的非监督深度学习.GAN之父,Ian J.Goodfellow,公认人工智能顶级专家. 原理.生成式对搞网络包含一个生成模型(generative model,G)和一个判别模型(discriminative model,D).Ian J.Goodfellow.Jean Pouget-Abadie.Mehdi Mirza.Bing Xu.Davi

(转)【重磅】无监督学习生成式对抗网络突破,OpenAI 5大项目落地

[重磅]无监督学习生成式对抗网络突破,OpenAI 5大项目落地 [新智元导读]"生成对抗网络是切片面包发明以来最令人激动的事情!"LeCun前不久在Quroa答问时毫不加掩饰对生成对抗网络的喜爱,他认为这是深度学习近期最值得期待.也最有可能取得突破的领域.生成对抗学习是无监督学习的一种,该理论由 Ian Goodfellow 提出,此人现在 OpenAI 工作.作为业内公认进行前沿基础理论研究的机构,OpenAI 不久前在博客中总结了他们的5大项目成果,结合丰富实例介绍了生成对抗网络

(转) 简述生成式对抗网络

简述生成式对抗网络 [转载请注明出处]chenrudan.github.io 本文主要阐述了对生成式对抗网络的理解,首先谈到了什么是对抗样本,以及它与对抗网络的关系,然后解释了对抗网络的每个组成部分,再结合算法流程和代码实现来解释具体是如何实现并执行这个算法的,最后给出一个基于对抗网络改写的去噪网络运行的结果,效果虽然挺差的,但是有些地方还是挺有意思的. 1. 对抗样本 2. 生成式对抗网络GAN 3. 代码解释 4. 运行实例 5. 小结 6. 引用 1. 对抗样本(adversarial e

学习笔记GAN001:生成式对抗网络,只需10步,从零开始到调试

生成式对抗网络(gennerative adversarial network,GAN),目前最火的非监督深度学习.一个生成网络无中生有,一个判别网络推动进化.学技术,不先着急看书看文章.先把Demo跑起来,顺利进入断点调试.这样就可以边学习边修改边验证,亲自下手参与调试,会比只是当个看客,更有兴趣更有成就感也更容易理解内容. 1?下载并安装Anaconda.https://www.continuum.io/downloads Anaconda的使用可以看这篇文章:http://www.jian

经典生成式对抗网络(GANs)的理解

1. 简介 首先简要介绍一下生成模型(Generative model)与判别模型(Discriminative mode)的概念: 生成模型:对联合概率进行建模,从统计的角度表示数据的分布情况,刻画数据是如何生成的,收敛速度快,例如朴素贝叶斯,GDA,HMM等.    判别模型:对条件概率P(Y|X) 进行建模,不关心数据如何生成,主要是寻找不同类别之间的最优分类面,例如LR,SVM等. 判别模型在深度学习乃至机器学习领域取得了巨大成功,其本质是将样本的特征向量映射成对应的label:而生成模