【最小生成树】prim算法

算法分析的一般步骤:

1、文字描述:如果一个算法文字描述不清楚,就说明思路不清楚,也不可能写好。

prim算法是实现图的最小生成树。既然是图,就假设包含n个顶点,m条边。prim算法是从顶点出发的,其算法时间复杂度与顶点数目有关系。

(注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图。)

算法思路:从某个顶点开始,假设v0,此时v0属于最小生成树结点中的一个元素,该集合假设u,剩下的V-v0为待判定的点,此时选取u中的顶点到V-v0中顶点的一个路径最小的边,并且将其中非u中的顶点加入到u中,循环直到u中的顶点包含图所有的顶点为止。

算法在选取最小路径的时候需要优化,具体思路:w[]数组保存各个顶点的最短路径,b[]数组保存到i顶点最短路径的顶点,比如,到0号顶点最短的路径是<v0,v3>,那么w[0]=<v0,v3>,b[0]=3;这样每次找最小路径就不是o(n*n)的代价了。

2、举例说明:

3、程序实现与说明:

#include <stdio.h>
#include <stdlib.h>
#define count 6
void prim(int a[][count],int u[],int w[],int b[],int n)
{
    int i=0,j=0,m=0,min=100;
    for(i=0;i<count;i++)
    {
        u[i]=0;//初始化0,说明没有访问过
        w[i]=a[0][i];//初始每个顶点最短路径为到0顶点的距离
        b[i]=0;//初始每个顶点都指向0顶点
    }
    u[0]=1;//赋值1,从0顶点开始
    for(i=1;i<n;i++)
    {
        min=100;
        j=0;
        for(m=1;m<n;m++)
        {
            if(!u[m] && w[m]<min)//很关键,得到到访问顶点到未访问顶点的最短路径以及对应顶点j
            {
                min=w[m];
                j=m;
            }
        }
        u[j]=1;//把下一个顶点标为已访问
        printf("%d,%d\n",j+1,b[j]+1);//输出结果
        for(m=1;m<n;m++)
        {
            if(!u[m] && a[j][m]<w[m])//此时,u集合里面多了一个顶点j,要重新更新最短路径以及对应的顶点
            {
                w[m]=a[j][m];
                b[m]=j;
            }
        }
    }
}
int main()
{
    int u[count],w[count],b[count],a[count][count];
    int i=0,j=0;
    for(i=0;i<count;i++)
    {
        for(j=0;j<count;j++)
        {
                a[i][j]= 100;
        }
    }
    a[0][1]=6,a[0][2]=1,a[0][3]=5;
    a[1][0]=6,a[1][2]=5,a[1][4]=3;
    a[2][0]=1,a[2][1]=5,a[2][3]=5,a[2][4]=6,a[2][5]=4;
    a[3][0]=5,a[3][2]=5,a[3][5]=2;
    a[4][1]=3,a[4][2]=6,a[4][5]=6;
    a[5][3]=2,a[5][2]=4,a[5][4]=6;
    prim(a,u,w,b,count);
    return 0;
}

4、时间复杂度:o(n*n)

参考博客:https://www.cnblogs.com/nannanITeye/p/3446424.html

原文地址:https://www.cnblogs.com/SoulSecret/p/10041549.html

时间: 2024-10-24 07:38:22

【最小生成树】prim算法的相关文章

最小生成树--prim算法

一个无向图G的最小生成树就是由该图的那些连接G的所有顶点的边构成的树,且其总价值最低,因此,最小生成树存在的充分必要条件为图G是连通的,简单点说如下: 1.树的定义:有n个顶点和n-1条边,没有回路的称为树 生成树的定义:生成树就是包含全部顶点,n-1(n为顶点数)条边都在图里就是生成树 最小:指的是这些边加起来的权重之和最小 2.判定条件:向生成树中任加一条边都一定构成回路 充分必要条件:最小生成树存在那么图一定是连通的,反过来,图是连通的则最小生成树一定存在 上图的红色的边加上顶点就是原图的

hdu 3371 最小生成树prim算法

Connect the Cities Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 8992    Accepted Submission(s): 2519 Problem Description In 2100, since the sea level rise, most of the cities disappear. Thoug

POJ1258最小生成树(prim算法)

POJ1258 思路:首先把第一个结点加入树中,每次往树中加入一个结点,加入的结点必须是与当前树中的结点距离最小那个点,这样每次把结点加入树中选取的都是最小权值,循环n-1次后把所有结点都加入树中. #include<iostream> #include<cstdio> #include<cstring> using namespace std; const int MAXN = 1e9; //创建map二维数组储存图表,low数组记录每2个点间最小权值,vis数组标记

poj1789Truck History(最小生成树prim算法)

题目链接: 啊哈哈,点我点我 思路:根据字符串中不同的长度建图,然后求图的最小生成树.. 题目: Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18272   Accepted: 7070 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vege

数据结构:最小生成树--Prim算法

最小生成树:Prim算法 最小生成树 给定一无向带权图,顶点数是n,要使图连通只需n-1条边,若这n-1条边的权值和最小,则称有这n个顶点和n-1条边构成了图的最小生成树(minimum-cost spanning tree). Prim算法 Prim算法是解决最小生成树的常用算法.它采取贪心策略,从指定的顶点开始寻找最小权值的邻接点.图G=<V,E>,初始时S={V0},把与V0相邻接,且边的权值最小的顶点加入到S.不断地把S中的顶点与V-S中顶点的最小权值边加入,直到所有顶点都已加入到S中

最小生成树のprim算法

Problem A Time Limit : 1000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) : 31   Accepted Submission(s) : 10 Problem Description 省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).经过调查评估,得到的统计表中列出了有可能建设公

无向图最小生成树Prim算法

问题 无向图最小生成树的Prim算法.一般的实现过程,采用了常规排序.本文在用Python实现中,使用了python的堆排序模块,不仅精简代码,而且提高效率. 思路说明 假设点A,B,C,D,E,F,两点之间有连线的,以及它们的距离分别是:(A-B:7);(A-D:5);(B-C:8);(B-D:9);(B-E:7);(C-E:5);(D-E:15);(D-F:6);(E-F:8);(E-G:9);(F-G:11) 关于Prim算法的计算过程,参与维基百科的词条:[普里姆算法] 将上述点与点关系

E - Agri-Net (最小生成树) -- prim算法

http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=193#problem/E prim算法 思想和步骤总结 (自己所写) dis[],map[][],vis[],pos ,min,ans(主要定义的变量) 首先,prim算法用于计算图边径长度已知的图,它所求的是将图中所有顶点相连接,所需要的最短路径的长度,prim算法适合计算稠密图,它的主要思想是贪心思想,贪心准则为每次选择未加入树中且距离树最小的顶点,并用dis[]数组不断更

Highways POJ-1751 最小生成树 Prim算法

Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输出需要添加边的两端点编号即可. 解题思路 这个可以使用最短路里面的Prim算法来实现,对于已经连接的城市,处理方式是令这两个城市之间的距离等于0即可. prim算法可以实现我们具体的路径输出,Kruskal算法暂时还不大会. 代码实现 #include<cstdio> #include<cs

最小生成树 Prim算法 Kruskal算法

最小生成树 给定一个无向图,如果它的某个子图中任意两个顶点都互相连通并且是一棵树,那么这棵树就叫做生成树,如果边上有权值,那么使得边权和最小的生成树叫做最小生成树. 常见的求解最小生成树的算法有Kruskal算法和Prim算法,生成树是否存在和图是否连通是等价的,所以假定图是连通的. Prim算法 假设有一棵只包含一个顶点v的数T,然后贪心地选取T和其他顶点之间相连的最小权值的边,并把它加到T中.不断进行这个操作,就可以得到最小生成树了(可用反证法证明) 不使用Heap优化的代码 int eg[