MapReduce shuffle的过程分析

shuffle阶段其实就是多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点上。

Map端:

  1、在map端首先接触的是InputSplit,在InputSplit中含有DataNode中的数据,每一个InputSplit都会分配一个Mapper任务,Mapper任务结束后产生<K2,V2>的输出,这些输出先存放在缓存中,每个map有一个环形内存缓冲区,用于存储任务的输出。默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spil l.percent),一个后台线程就把内容写到(spill)Linux本地磁盘中的指定目录(mapred.local.dir)下的新建的一个溢出写文件。(注意:map过程的输出是写入本地磁盘而不是HDFS,但是一开始数据并不是直接写入磁盘而是缓冲在内存中,缓存的好处就是减少磁盘I/O的开销,提高合并和排序的速度。又因为默认的内存缓冲大小是100M(当然这个是可以配置的),所以在编写map函数的时候要尽量减少内存的使用,为shuffle过程预留更多的内存,因为该过程是最耗时的过程。)

  2、写磁盘前,要进行partition、sort和combine等操作。通过分区,将不同类型的数据分开处理,之后对不同分区的数据进行排序,如果有Combiner,还要对排序后的数据进行combine。等最后记录写完,将全部溢出文件合并为一个分区且排序的文件。(注意:在写磁盘的时候采用压缩的方式将map的输出结果进行压缩是一个减少网络开销很有效的方法!)

  3、最后将磁盘中的数据送到Reduce中,从图中可以看出Map输出有三个分区,有一个分区数据被送到图示的Reduce任务中,剩下的两个分区被送到其他Reducer任务中。而图示的Reducer任务的其他的三个输入则来自其他节点的Map输出。

Reduce端:

  1、Copy阶段:Reducer通过Http方式得到输出文件的分区。reduce端可能从n个map的结果中获取数据,而这些map的执行速度不尽相同,当其中一个map运行结束时,reduce就会从JobTracker中获取该信息。map运行结束后TaskTracker会得到消息,进而将消息汇报给JobTracker,reduce定时从JobTracker获取该信息,reduce端默认有5个数据复制线程从map端复制数据。

  2、Merge阶段:如果形成多个磁盘文件会进行合并从map端复制来的数据首先写到reduce端的缓存中,同样缓存占用到达一定阈值后会将数据写到磁盘中,同样会进行partition、combine、排序等过程。如果形成了多个磁盘文件还会进行合并,最后一次合并的结果作为reduce的输入而不是写入到磁盘中。

  3、Reducer的参数:最后将合并后的结果作为输入传入Reduce任务中。(注意:当Reducer的输入文件确定后,整个Shuffle操作才最终结束。之后就是Reducer的执行了,最后Reducer会把结果存到HDFS上。)

原文地址:https://www.cnblogs.com/wmx24/p/10155601.html

时间: 2024-10-24 15:13:10

MapReduce shuffle的过程分析的相关文章

mapreduce.shuffle set in yarn.nodemanager.aux-services is invalid

15/07/01 20:14:41 FATAL containermanager.AuxServices: Failed to initialize mapreduce.shuffle java.lang.IllegalArgumentException: The ServiceName: mapreduce.shuffle set in yarn.nodemanager.aux-services is invalid.The valid service name should only con

MapReduce shuffle过程剖析及调优

更新记录 2017-07-18 初稿 MapReduce简介 在Hadoop MapReduce中,框架会确保reduce收到的输入数据是根据key排序过的.数据从Mapper输出到Reducer接收,是一个很复杂的过程,框架处理了所有问题,并提供了很多配置项及扩展点.一个MapReduce的大致数据流如下图: 更详细的MapReduce介绍参考Hadoop MapReduce原理与实例. Mapper的输出排序.然后传送到Reducer的过程,称为shuffle.本文详细地解析shuffle过

MapReduce Shuffle过程

MapReduce Shuffle 过程详解 一.MapReduce Shuffle过程 1. Map Shuffle过程 2. Reduce Shuffle过程 二.Map Shuffle过程 1.   环形缓冲区 Map输出结果是先放入内存中的一个环形缓冲区,这个环形缓冲区默认大小为100M(这个大小可以在io.sort.mb属性中设置),当环形缓冲区里的数据量达到阀值时(这个值可以在io.sort.spill.percent属性中设置)就会溢出写入到磁盘,环形缓冲区是遵循先进先出原则,Ma

MapReduce shuffle阶段详解

在Mapreduce中,Shuffle过程是Mapreduce的核心,它分布在Mapreduce的map阶段和reduce阶段,共可分为6个详细的阶段: 1).Collect阶段:将MapTask的结果输出到默认大小为100M的MapOutputBuffer内部环形内存缓冲区,保存的是key/value,Partition分区 2).Spill阶段:当内存中的数据量达到一定的阀值的时候,就会将数据写入本地磁盘,在将数据写入磁盘之前需要对数据进行一次排序的操作,先是对partition分区号进行排

六、MapReduce Shuffle 过程

Shuffle描述数据从map task输出到reduce输入的这段过程 1.map端shuffle功能 1)分区:决定将map task 交给哪个reduce程序处理: 2)排序:对分区中的数据做排序处理 3)spill写入磁盘:将内存中数据写入磁盘 4)merge合并:将小文件合并成大文件 说明:设置reduce task的个数在run()方法中使用代码: job.setNumReduceTasks(3) 2.reduce端shuffle功能 1)从map数据中拷贝属于自己分区的数据 2)对

MapReduce Shuffle过程详解

Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce,Shuffle是必须要了解的.我看过很多相关方面的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越乱.前端时间在做MapReduce job性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解它原理的朋友都能有所收获.如果你对这篇文章有

Mapreduce shuffle和排序

Mapreduce为了确保每个reducer的输入都按键排序.系统执行排序的过程-----将map的输出作为输入传给reducer 称为shuffle.学习shuffle是如何工作的有助于我们理解mapreduce工作机制.shuffle属于hadoop不断被优化和改进的代码库的一部分.从许多方面看,shuffle是mapreduce的“心脏”,是奇迹出现的地方. 下面这张图介绍了mapreduce里shuffle的工作原理: 从图可以看出shuffle发生在map端和reduce端之间,将ma

hadoop入门笔记MapReduce Shuffle简介(五)

1. MapReduce 定义 Hadoop 中的 MapReduce是一个使用简单的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错式并行处理TB级别的数据集 2. MapReduce 特点 MapReduce 为什么如此受欢迎?尤其现在互联网+时代,互联网+公司都在使用 MapReduce.MapReduce 之所以如此受欢迎,它主要有以下几个特点. - MapReduce 易于编程.它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可

MapReduce Shuffle And Sort

引言   MapReduce作出保证:进入每个Reducer的数据行都是有序的(根据数据行的键值进行排序).MapReduce将Mapper的输出进行排序并传递给Reducer作为输入的过程称为Shuffle.在很多场景下,Shuffle是整个MapReduce过程的核心,也是“奇迹”发生的地方,如下图所示: 理解Shuffle的执行过程对我们优化MapReduce任务带来帮助.这里以Hadoop 0.20.2代码为基础进行介绍,同时也会涉及到如何扩展MapReduce组件,从而影响Shuffe