麻省理工公开课:线性代数 第10课 四个基本子空间

参考资料:

网易公开课:http://open.163.com/special/opencourse/daishu.html  麻省理工公开课:线性代数

教材:Introduction to Linear Algebra, 4th edition  by Gilbert Strang

链接:https://pan.baidu.com/s/1bvC85jbtOVdVdw8gYMpPZg 
提取码:s9bl

假设:$m\times n$矩阵$A$

一、矩阵$A$的列空间:$C(A)$

(1)是$R^m$的子空间

(2)维数:矩阵$A$的秩$r$  //$A\mathbf{x}=0$主元变量的数目

(3)基:$r$个主列

二、矩阵$A$的零空间:$N(A)$

(1)是$R^n$的子空间

(2)维数:$A\mathbf{x}=0$自由变量的数目$n-r$

(3)基:自由变量对应的$n-r$个特解

三、矩阵$A$的行空间:$C(\color{red}{A^T})$  //矩阵$A$所有行的线性组合;或者矩阵$A$的转置$A^T$所有列的线性组合

(1)是$R^n$的子空间

(2)维数:矩阵$A^T$的秩$r$  //$rank(A)=rank(A^T)$

(3)基:行最简矩阵$R$的前$r$行  //不一定是$A$的前$r$行

注:矩阵$A$和行最简矩阵$R$的行空间相同($C(A^T)=C(R^T)$),列空间不同($C(A)\neq C(R)$)  //“行变换”不影响行空间(基一致),但是会改变列空间

四、矩阵$A$的转置的零空间:$N(\color{red}{A^T})$  //左零空间:$A^T\mathbf{y}=\mathbf{0} \Rightarrow \color{red}{\mathbf{y}^TA=\mathbf{0}^T}$

(1)是$R^m$的子空间

(2)维数:$m-r$

(3)基:变换矩阵$E$的最下方$m-r$行

  利用高斯-约旦消元法(第3课)求解变换矩阵$E$使得$EA=R$  //当m=n,且$A$可逆时,$R=I, E=A^{-1}$

  变换矩阵$E$的最下方$m-r$行正是使得$A$各行线性组合为0的系数(左乘相当于行组合),即为矩阵$A^T$零空间的基

示例:

  • 行空间的基为$R$的前$r=2$行:$[1~0~1~1]^T$和$[0~1~1~0]^T$
  • 左零空间的基为$E$的最后$m-r=3-2=1$行:$[-1~0~1]^T$

五、新型向量空间$M$

(1)定义:所有$3\times 3$矩阵  //将矩阵视为“向量”

(2)满足向量空间的八条运算法则:如对加法和数乘封闭等

(3)子空间:所有上三角矩阵、所有对称矩阵、所有对角矩阵$D$(前两者交集)  //$D$的维数为3

原文地址:https://www.cnblogs.com/hg-love-dfc/p/10312008.html

时间: 2024-08-28 21:42:06

麻省理工公开课:线性代数 第10课 四个基本子空间的相关文章

麻省理工公开课:线性代数 第6课 列空间和零空间

参考资料: 网易公开课:http://open.163.com/special/opencourse/daishu.html 麻省理工公开课:线性代数 一.向量空间和子空间(加法封闭.数乘封闭) 向量空间$R^3$的子空间:$R^3$.任意经过原点$(0, 0, 0)$的平面$P$和直线$L$.只包含零向量的空间$Z$ 并集:$P\bigcup L$是子空间吗? //否!对加法运算不封闭 交集:$P\bigcap L$是子空间吗? //是! 结论:任意子空间的交集仍然是子空间 二.矩阵列空间 $

麻省理工公开课:线性代数 第7课 求解Ax=0:主变量、特解

参考资料: 网易公开课:http://open.163.com/special/opencourse/daishu.html 麻省理工公开课:线性代数 教材:Introduction to Linear Algebra, 4th edition  by Gilbert Strang 链接:https://pan.baidu.com/s/1bvC85jbtOVdVdw8gYMpPZg 提取码:s9bl 假设:$A$为$3\times 4$长方形矩阵(线性相关),求解$A\mathbf{x}=0$

麻省理工公开课:线性代数 第8课 求解Ax=b:可解性和解的结构

参考资料: 网易公开课:http://open.163.com/special/opencourse/daishu.html 麻省理工公开课:线性代数 教材:Introduction to Linear Algebra, 4th edition  by Gilbert Strang 链接:https://pan.baidu.com/s/1bvC85jbtOVdVdw8gYMpPZg 提取码:s9bl 假设:$A$为$3\times 4$长方形矩阵(线性相关),求解$A\mathbf{x}=\ma

线性代数导论35——线性代数全总结(麻省理工公开课:线性代数)

课程介绍 "线性代数",同微积分一样,是高等数学中两大入门课程之一,不仅是一门非常好的数学课程,也是一门非常好的工具学科,在很多领域都有广泛的用途.本课程讲述了矩阵理论及线性代数的基本知识,侧重于那些与其他学科相关的内容,包括方程组.向量空间.行列式.特征值.相似矩阵及正定矩阵. [第1集] 方程组的几何解释    [第2集] 矩阵消元    [第3集] 乘法和逆矩阵    [第4集] A的LU分解    [第5集] 转置-置换-向量空间R    [第6集] 列空间和零空间    [第

第一课 矩阵的行图像与列图像(麻省理工公开课:线性代数)【转载】

转载自:http://blog.csdn.net/a352611/article/details/48602207 仅用于个人笔记. 目录(?)[-] 从方程组到矩阵 row picture 行图像 column picture 列图像 本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~ 1. 从方程组到矩阵  矩阵的诞生是为了用一种简洁的方式表达线性方程组 个人理解来说就是为了更好的描述和解决 Ax = b 从系统的角度来理解: A 就是我们的系统 x

【线性代数】矩阵的四个基本子空间

矩阵的四个基本子空间 1.零空间 矩阵A的零空间就Ax=0的解的集合.假设矩阵的秩为r,矩阵为m*n的矩阵,则零空间的维数为n-r.因为秩为r,则自由变量的个数为n-r,有几个自由变量,零空间就可以表示层几个特解的线性组合,也即是零空间的维数为自由变量的个数. 2.列空间 矩阵A的列空间就是矩阵A中各列的线性组合.假设矩阵的秩为r,矩阵为m*n的矩阵,则列空间可以表示为r个主元的线性组合,即零空间的维数为r. 3.行空间 在线性代数中,我们一般习惯将矩阵看出是一组列向量的组合,matlab中矩阵

MIT麻省理工学院公开课:计算机科学及编程导论 Python 笔记1-3

Lecture1:Goals of the course; what is computation; introduction to data types, operators, and variables Python High (√) VS. low General (√) VS. targetted Interpreted (√) VS. compile Syntax语法:what are legal expressions "cat dog boy " Static seman

麻省理工学院公开课-第一讲:算法分析

http://www.cnblogs.com/banli/archive/2013/05/19/3087486.html http://www.cnblogs.com/diliwang/p/3352946.html 自己再梳理一下,便于记忆: 1.插入排序(Insertion Sort) 问题描述:输入一个数组A[1,2....n],输出一个按升序排列的数组A'. 算法分析理论: 通常,我们寻找算法运行的最大时间(上界)T(n),因为最坏的情况是一个承诺,一个保证. 因为,算法的运行时间依赖于我

麻省理工学院公开课-第二讲:渐进符号、递归及解法

http://blog.csdn.net/julius819/article/details/8267060 http://www.cnblogs.com/banli/archive/2013/05/21/3089900.html