总算是做上一道LCA的应用题了...
题意:有$n$个牧场, $m$根管道分别连接编号为$u,v$的牧场花费$p_{i}$,在第$i$个牧场挖口井需要花费$w_{i}$,有$P$根管道直接连通着$u,v$,即免费连上$u,v$
对每根免费管道输出让所有牧场都有水的最小花费
先是最小生成树,用0去连每一个点,边权就是每个点的权值,然后正常建,跑一遍最小生成树,把用到的边重新建一次图,然后就对每次询问的$u,v$,减掉他们之间的路径的最长边就是答案了
因为删去这其中一条边,再免费连上$u,v$,最后还是一棵树,最小花费就减去最长边就好了。
然后求两点路径上的最长边就得用到倍增LCA,本来有点想不太明白,然后画了个图就清楚了,再预处理的dfs中,求每个点的LCA就可以直接求最长边了
$cost[u][i]$表示u往上走$2^{i}$步之间的最长边
转移就是$cost[u][i]=\max (cost[u][i-1], cost[lca[u][i-1]][i-1])$
求出来的是$u$往上走1, 2, 4, ...步的距离
如果需要往上走3步的 答案即为$max(cost[u][0], cost[lca[u][0]][1])$
这在查询过程中实现即可
#include <bits/stdc++.h> using namespace std; inline int read() { int x = 0, f = 1; char ch = getchar(); while (ch < ‘0‘ || ch > ‘9‘) { if (ch == ‘-‘) f = -1; ch = getchar(); } while (ch >= ‘0‘ && ch <= ‘9‘) { x = x * 10 + ch - 48; ch = getchar(); } return x * f; } const int N = 5e3 + 10; const int M = 3e5 + 10; struct Edge1 { int u, v, c; bool operator < (const Edge1 &rhs) const { return c < rhs.c; } } e[N + M]; struct Edge {int v, next, c;} edge[2*N]; int cnt, head[N], fa[N], lca[N][20], cost[N][20], dep[N], n, m, q; bool vis[N]; inline void addedge(int u, int v, int c) { edge[cnt].v = v; edge[cnt].c = c; edge[cnt].next = head[u]; head[u] = cnt++; } void init() { cnt = 0; for (int i = 0; i <= n; i++) fa[i] = i, head[i] = -1, dep[i] = 0, vis[i] = false; memset(cost, 0, sizeof(cost)); memset(lca, 0, sizeof(lca)); } int getfa(int x) { return x == fa[x] ? x : fa[x] = getfa(fa[x]); } void dfs(int u) { lca[u][0] = fa[u]; vis[u] = 1; for (int i = 1; i <= 16; i++) { lca[u][i] = lca[lca[u][i-1]][i-1]; cost[u][i] = max(cost[u][i-1], cost[lca[u][i-1]][i-1]); } for (int i = head[u]; ~i; i = edge[i].next) { int v = edge[i].v, c = edge[i].c; if (vis[v]) continue; dep[v] = dep[u] + 1; cost[v][0] = c; fa[v] = u; dfs(v); } } int Lca(int u, int v) { if (dep[u] < dep[v]) swap(u, v); int ans = 0; int f = dep[u] - dep[v]; for (int i = 0; i <= 16; i++) { if (f & (1 << i)) { ans = max(ans, cost[u][i]); u = lca[u][i]; } } if (u == v) return ans; for (int i = 16; i >= 0; i--) { if (lca[u][i] != lca[v][i]) { ans = max(ans, cost[u][i]); ans = max(ans, cost[v][i]); u = lca[u][i]; v = lca[v][i]; } } return max(max(ans, cost[u][0]), cost[v][0]); } int main() { while (~scanf("%d%d%d", &n, &m, &q)) { init(); int sum = 0; int tol = 0; for (int i = 1; i <= n; i++) { int p = read(); e[++tol].u = 0; e[tol].v = i; e[tol].c = p; } for (int i = 1; i <= m; i++) { int u = read(), v = read(), c = read(); e[++tol].u = u, e[tol].v = v, e[tol].c = c; } sort(e + 1, e + 1 + tol); for (int i = 1; i <= tol; i++) { int u = getfa(e[i].u), v = getfa(e[i].v); if (u == v) continue; fa[v] = u; sum += e[i].c; addedge(e[i].u, e[i].v, e[i].c); addedge(e[i].v, e[i].u, e[i].c); } fa[0] = 0; dfs(0); while (q--) { int u = read(), v = read(); printf("%d\n", sum - Lca(u, v)); } } return 0; }
原文地址:https://www.cnblogs.com/Mrzdtz220/p/10797605.html
时间: 2024-10-27 17:44:40