19.2.13 [LeetCode 72] Edit Distance

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace ‘h‘ with ‘r‘)
rorse -> rose (remove ‘r‘)
rose -> ros (remove ‘e‘)

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove ‘t‘)
inention -> enention (replace ‘i‘ with ‘e‘)
enention -> exention (replace ‘n‘ with ‘x‘)
exention -> exection (replace ‘n‘ with ‘c‘)
exection -> execution (insert ‘u‘)

题意

求最小编辑距离

有3个操作:删除,插入和替换

题解

一开始想了个dp,不够快

 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         int l1 = word1.length(), l2 = word2.length();
 5         vector<vector<int>>dp(l1+1, vector<int>(l2+1, INT_MAX));
 6         for (int i = 0; i <= l1; i++)dp[i][0] = i;
 7         for (int i = 0; i <= l2; i++)dp[0][i] = i;
 8         for (int i = 1; i <= l1; i++) {
 9             int minnum = INT_MAX;
10             for (int j = 1; j <= l2; j++) {
11                 if (word1[i-1] == word2[j-1])
12                     dp[i][j] =  dp[i - 1][j - 1];
13                 else {
14                     int dp1 = dp[i - 1][j] + 1;
15                     int dp2 = dp[i - 1][j - 1] + 1;
16                     dp[i][j] = min(dp1, dp2);
17                     if (minnum != INT_MAX)
18                         dp[i][j] = min(minnum + j, dp[i][j]);
19                 }
20                 minnum = min(dp[i][j] - j, minnum);
21             }
22         }
23         return dp[l1][l2];
24     }
25 };

其实是有个地方我没注意到: dp[i][j] 与 dp[i][j-1] 的关系实际上是映射着插入操作的

 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         int l1 = word1.length(), l2 = word2.length();
 5         vector<vector<int>>dp(l1+1, vector<int>(l2+1, INT_MAX));
 6         for (int i = 0; i <= l1; i++)dp[i][0] = i;
 7         for (int i = 0; i <= l2; i++)dp[0][i] = i;
 8         for (int i = 1; i <= l1; i++) {
 9             for (int j = 1; j <= l2; j++) {
10                 if (word1[i-1] == word2[j-1])
11                     dp[i][j] =  dp[i - 1][j - 1];
12                 else {
13                     dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i][j - 1])) + 1;
14                 }
15             }
16         }
17         return dp[l1][l2];
18     }
19 };

貌似换成数组会更快,我还是第一次知道可以不动态申请内存这样写数组……

 1 class Solution {
 2 public:
 3     int minDistance(string word1, string word2) {
 4         int l1 = word1.length(), l2 = word2.length();
 5         int dp[l1+1][l2+1];
 6         for (int i = 0; i <= l1; i++)dp[i][0] = i;
 7         for (int i = 0; i <= l2; i++)dp[0][i] = i;
 8         for (int i = 1; i <= l1; i++) {
 9             for (int j = 1; j <= l2; j++) {
10                 if (word1[i-1] == word2[j-1])
11                     dp[i][j] =  dp[i - 1][j - 1];
12                 else {
13                     dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i][j - 1])) + 1;
14                 }
15             }
16         }
17         return dp[l1][l2];
18     }
19 };

原文地址:https://www.cnblogs.com/yalphait/p/10371591.html

时间: 2024-09-28 20:43:34

19.2.13 [LeetCode 72] Edit Distance的相关文章

LeetCode 72. Edit Distance Java

72.Edit Distance(编辑距离) 题目: 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 思路: 多次选择试图得到最优解,那么考虑动态规划. 先假设word1有len1位,word2有len2位,建立数组step,step[i][j]就代表我们要将word1前 i 位转换为word2前 j 位的最少数量. 此时word1查找到第 i+1 位字母a,

leetCode 72.Edit Distance (编辑距离) 解题思路和方法

Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a char

LeetCode 72 Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a character c) Repla

第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三种情况考虑 分别对应三中操作 因为只需要三个值就可以更新dp[i][j] 我们可以把空间复杂度降低到O(n) Replace word1[i - 1] by word2[j - 1] (dp[i][j] = dp[i - 1][j - 1] + 1 (for replacement)); Delet

【leetcode】Edit Distance 详解

下图为TI C6xx DSP Nyquist总线拓扑图,总线连接了master与slave,提供了高速的数据传输.有很多种速率不同的总线,如图中的红色方框,最高速总线为CPU/2 TeraNet SCR(即VBUSM SCR),带宽为256bit,其他低速总线为CPU/3,CPU/6,带宽参考图中所示.总线之间用Bridge(桥)连接,作用包括转换总线的速率,使之与所流向总线的速率相同等. 在具体应用中,各种速率的总线完全可以满足复杂的数据传输,而数据传输的瓶颈往往在于连接总线之间的Bridge

72. Edit Distance &amp;&amp; 161. One Edit Distance

72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a c

刷题72. Edit Distance

一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一点思路也没,就直接看答案了.用的还是dp算法,dp[n1+1][n2+1]中的dp[i][j]表示将word1的前i位,变为word2的前j位需要的步骤.注意第1行是空,第1列也是空. 1.第一行中,dp[0][i]表示空字符""到word2[0,...,i]需要编辑几次 2.第一列中,d

Baozi Leetcode solution 72. Edit Distance

Problem Statement Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2. You have the following 3 operations permitted on a word: Insert a character Delete a character Replace a character Example 1:

LeetCode One Edit Distance

原题链接在这里:https://leetcode.com/problems/one-edit-distance/ Given two strings S and T, determine if they are both one edit distance apart. 与Edit Distance类似. 若是长度相差大于1, return false. 若是长度相差等于1, 遇到不同char时, 长的那个向后挪一位. 若是长度相等, 遇到不同char时同时向后挪一位. 出了loop还没有返回,