斐波那契数列【java实现】

java  实现斐波那契数列
以下是Java代码实现(递归与递推两种方式):
    import java.util.Scanner;
    /**
     * Fibonacci
     *
     * @author tongqian.zhang
     */
    public class Fibonacci {
         public static void main(String[] args) {
            Scanner scanner = new Scanner(System.in);
            System.out.println("Please input this fibonacci n:");
            int n = scanner.nextInt(); // 假设输入为大于零的整数
            System.out.println(fibonacci(6) + ":" + fibonacciNormal(6));
            int sum = 0;
            for(int i = 1; i <= n; i++){
                sum += fibonacci(i);
            }
            System.out.println(sum);
        }
        // 递归实现方式
        public static int fibonacci(int n){
            if(n <= 2){
                return 1;
            }else{
                return fibonacci(n-1) + fibonacci(n-2);
            }
        }
        // 递推实现方式
        public static int fibonacciNormal(int n){
            if(n <= 2){
                return 1;
            }
            int n1 = 1, n2 = 1, sn = 0;
            for(int i = 0; i < n - 2; i ++){
                sn = n1 + n2;
                n1 = n2;
                n2 = sn;
            }
            return sn;
        }
    }  

原文地址:https://www.cnblogs.com/dxxdsw/p/10645223.html

时间: 2024-10-11 02:28:55

斐波那契数列【java实现】的相关文章

用HashMap优化斐波那契数列 java算法

斐波那契是第一项为0,第二项为1,以后每一项是前面两项的和的数列. 源码:Fibonacci.java public class Fibonacci{ private static int times=0; public static void main(String args[]){ int nums = fibonacci(30); System.out.println("结果:"+nums); System.out.println("次数:"+times);

如何打印斐波拉契数列以及质数列表

这其实是两道非常基础和简单地题.但somehow每隔一段时间我老是会不经意地想起这两个问题,有时候卡克没有一下想起解法还会急的直冒汗................... 言归正传,贴出这两题代码 (1)打印斐波拉契数列 // Java program for Fibonacci number using Loop. public static int fibonacciLoop(int number){ if(number == 1 || number == 2){ return 1; } i

【Java】斐波那契数列(Fibonacci Sequence、兔子数列)的3种计算方法(递归实现、递归值缓存实现、循环实现)

斐波那契数列:0.1.1.2.3.5.8.13………… 他的规律是,第一项是0,第二项是1,第三项开始(含第三项)等于前两项之和. > 递归实现 看到这个规则,第一个想起当然是递归算法去实现了,于是写了以下一段: public class RecursionForFibonacciSequence { public static void main(String[] args) { System.out.println(recursion(10)); } public static double

java输出斐波那契数列

题目要求:编写程序在控制台输出斐波那契数列前20项,每输出5个数换行 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:1.1.2.3.5.8.13.21.34.--在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*) //Java编程:三种

Java 兔子问题(斐波那契数列)扩展篇

Java兔子问题(斐波那契数列)扩展篇 斐波那契数列指的是这样一个数列 0, 1, 1, 2,3, 5, 8, 13, 21, 34, 55, 89, 144, ...对于这个数列仅仅能说将兔子生产周期第为3月.假设生成周期变成4月这个数列肯定不是这种,或者说兔子还有死亡周期,在这里我是对兔子生产周期没有限定.仅仅要月份大于生产周期都能够计算出第month月份究竟能产生多少对兔子. Java兔子生殖问题 斐波那契数列又因数学家列昂纳多·斐波那契以兔子生殖为样例而引入.故又称为"兔子数列"

Java实现斐波那契数列Fibonacci

import java.util.Scanner; public class Fibonacci { public static void main(String[] args) { // TODO Auto-generated method stub Scanner in=new Scanner(System.in); System.out.println("斐波那契数列的个数是:"); int total=in.nextInt(); System.out.println("

PHP_I love U之(2)php衣食父母: Java与PHP效率比拼之一:斐波那契数列

PHP_I love U之(1)php衣食父母: Java与PHP效率比拼之一: 斐波那契数列 Fibonacci 解释见:http://zh.wikipedia.org/wiki/%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0%E5%88%97 ( 应该是1 , 维基的公式错了!?!) (n≧2) 这次先写 Java的代码: class fb { static int f1b (int x) { if ((0==x)||(1==x) ) {  ret

JAVA基本算法面试题:1斐波纳契数列

开始学习JAVA,基础知识恶补! 斐波纳契数列,又称黄金分割数列,指的是这样一个数列:1.1.2.3.5.8.13.21.……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*). 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 以下是Java代码实现(递归与递推两种方式): import java.util.Scanner;

java程序员到底该不该了解一点算法(一个简单的递归计算斐波那契数列的案例说明算法对程序的重要性)

为什么说 “算法是程序的灵魂这句话一点也不为过”,请看下面这个简单的案例 1 package recursion; 2 3 import java.util.HashMap; 4 import java.util.Map; 5 6 import org.junit.Test; 7 8 /** 9 * @author: MengXianman 10 * @creationTime: 2017年11月27日 上午9:47:51 11 * @description: 斐波那契数列结合备忘录算法的简单使

几种复杂度的斐波那契数列的Java实现

一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月,长大后的兔子每个月能生产一对兔子,假设兔子不会死亡,那么一年后有多少只兔子? 不难看出每个月的兔子的总数可以用以下数列表示:1,1,2,3,5,8,13...... 二:最直观的算法 1.算法实现 通过观察我们不难发现斐波那契数列从第三项开始每一项都是前两项的和,因此我们不难总结出该数列的递推公式: