程序员用于机器学习编程的Python 数据处理库 pandas 入门教程

入门介绍

pandas适合于许多不同类型的数据,包括:

· 具有异构类型列的表格数据,例如SQL表格或Excel数据

· 有序和无序(不一定是固定频率)时间序列数据。

· 具有行列标签的任意矩阵数据(均匀类型或不同类型)

· 任何其他形式的观测/统计数据集。

由于这是一个Python语言的软件包,因此需要你的机器上首先需要具备Python语言的环境。关于这一点,请自行在网络上搜索获取方法。

关于如何获取pandas请参阅官网上的说明:pandas Installation

通常情况下,我们可以通过pip来执行安装:

sudo pip3 install pandas

或者通过conda 来安装pandas:

conda install pandas

目前(2018年2月)pandas的最新版本是v0.22.0(发布时间:2017年12月29日)。

我已经将本文的源码和测试数据放到Github上: pandas_tutorial ,读者可以前往获取。

另外,pandas常常和NumPy一起使用,本文中的源码中也会用到NumPy

建议读者先对NumPy有一定的熟悉再来学习pandas,我之前也写过一个NumPy的基础教程,参见这里:Python 机器学习库 NumPy 教程

核心数据结构

pandas最核心的就是Series和DataFrame两个数据结构。

这两种类型的数据结构对比如下:

名称 维度 说明
Series 1维 带有标签的同构类型数组
DataFrame 2维 表格结构,带有标签,大小可变,且可以包含异构的数据列

DataFrame可以看做是Series的容器,即:一个DataFrame中可以包含若干个Series。

注:在0.20.0版本之前,还有一个三维的数据结构,名称为Panel。这也是pandas库取名的原因:pan(el)-da(ta)-s。但这种数据结构由于很少被使用到,因此已经被废弃了。

Series

由于Series是一维结构的数据,我们可以直接通过数组来创建这种数据,像这样:

# data_structure.py

import pandas **as** pd

import numpy **as** np

series1= pd.Series([1, 2, 3, 4])

print("series1:\n{}\n".format(series1))

这段代码输出如下:

series1:

0    1

1    2

2    3

3    4

dtype: int64

这段输出说明如下:

· 输出的最后一行是Series中数据的类型,这里的数据都是int64类型的。

· 数据在第二列输出,第一列是数据的索引,在pandas中称之为Index。

我们可以分别打印出Series中的数据和索引:

# data_structure.py

print("series1.values: {}\n".format(series1.values))

print("series1.index: {}\n".format(series1.index))

这两行代码输出如下:

series1.values: [1 2 3 4]

series1.index: RangeIndex(start=0, stop=4, step=1)

如果不指定(像上面这样),索引是[1, N-1]的形式。不过我们也可以在创建Series的时候指定索引。索引未必一定需要是整数,可以是任何类型的数据,例如字符串。例如我们以七个字母来映射七个音符。索引的目的是可以通过它来获取对应的数据,例如下面这样:

# data_structure.py

series2= pd.Series([1, 2, 3, 4, 5, 6, 7],

    index=["C", "D", "E", "F", "G", "A", "B"])

print("series2:\n{}\n".format(series2))

print("E is {}\n".format(series2["E"]))

这段代码输出如下:

series2:

C    1

D    2

E    3

F    4

G    5

A    6

B    7

dtype: int64

E **is** 3

DataFrame

下面我们来看一下DataFrame的创建。我们可以通过NumPy的接口来创建一个4×4的矩阵,以此来创建一个DataFrame,像这样:

# data_structure.py

df1= pd.DataFrame(np.arange(16).reshape(4,4))

print("df1:\n{}\n".format(df1))

这段代码输出如下:

df1:

    0 1 2 3

0 0 1 2 3

1 4 5 6 7

2 8 9  10  11

3  12  13  14  15

从这个输出我们可以看到,默认的索引和列名都是[0, N-1]的形式。

我们可以在创建DataFrame的时候指定列名和索引,像这样:

# data_structure.py

df2= pd.DataFrame(np.arange(16).reshape(4,4),

    columns=["column1", "column2", "column3", "column4"],

    index=["a", "b", "c", "d"])

print("df2:\n{}\n".format(df2))

这段代码输出如下:

df2:

 column1  column2  column3  column4

a        0        1        2        3

b        4        5        6        7

c        8        9 10 11

d 12 13 14 15

我们也可以直接指定列数据来创建DataFrame:

# data_structure.py

df3= pd.DataFrame({"note": ["C", "D", "E", "F", "G", "A", "B"],

    "weekday": ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]})

print("df3:\n{}\n".format(df3))

这段代码输出如下:

df3:

  note weekday

0    C Mon

1    D Tue

2    E Wed

3    F Thu

4    G Fri

5    A Sat

6    B Sun

请注意:

· DataFrame的不同列可以是不同的数据类型

· 如果以Series数组来创建DataFrame,每个Series将成为一行,而不是一列

例如:

# data_structure.py

noteSeries= pd.Series(["C", "D", "E", "F", "G", "A", "B"],

    index=[1, 2, 3, 4, 5, 6, 7])

weekdaySeries= pd.Series(["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"],

    index=[1, 2, 3, 4, 5, 6, 7])

df4= pd.DataFrame([noteSeries, weekdaySeries])

print("df4:\n{}\n".format(df4))

df4的输出如下:

df4:

 1    2    3    4    5    6    7

0    C    D    E    F    G    A    B

1  Mon  Tue  Wed  Thu  Fri  Sat  Sun

我们可以通过下面的形式给DataFrame添加或者删除列数据:

# data_structure.py

df3["No."]= pd.Series([1, 2, 3, 4, 5, 6, 7])

print("df3:\n{}\n".format(df3))

del df3["weekday"]

print("df3:\n{}\n".format(df3))

这段代码输出如下:

df3:

  note weekday  No.

0    C Mon    1

1    D Tue    2

2    E Wed    3

3    F Thu    4

4    G Fri    5

5    A Sat    6

6    B Sun    7

df3:

  note  No.

0    C    1

1    D    2

2    E    3

3    F    4

4    G    5

5    A    6

6    B    7

Index对象与数据访问

pandas的Index对象包含了描述轴的元数据信息。当创建Series或者DataFrame的时候,标签的数组或者序列会被转换成Index。可以通过下面的方式获取到DataFrame的列和行的Index对象:

# data_structure.py

print("df3.columns\n{}\n".format(df3.columns))

print("df3.index\n{}\n".format(df3.index))

这两行代码输出如下:

df3.columns

Index([‘note‘, ‘No.‘], dtype=‘object‘)

df3.index

RangeIndex(start=0, stop=7, step=1)

请注意:

· Index并非集合,因此其中可以包含重复的数据

· Index对象的值是不可以改变,因此可以通过它安全的访问数据

DataFrame提供了下面两个操作符来访问其中的数据:

· loc:通过行和列的索引来访问数据

· iloc:通过行和列的下标来访问数据

例如这样:

1 # data_structure.py
2
3 print("Note C, D is:\n{}\n".format(df3.loc[[0, 1], "note"]))
4
5 print("Note C, D is:\n{}\n".format(df3.iloc[[0, 1], 0]))

第一行代码访问了行索引为0和1,列索引为“note”的元素。第二行代码访问了行下标为0和1(对于df3来说,行索引和行下标刚好是一样的,所以这里都是0和1,但它们却是不同的含义),列下标为0的元素。

这两行代码输出如下:

 1 Note C, D **is**:
 2
 3 0    C
 4
 5 1    D
 6
 7 Name: note, dtype: **object**
 8
 9 Note C, D **is**:
10
11 0    C
12
13 1    D
14
15 Name: note, dtype: **object**

文件操作

pandas库提供了一系列的read_函数来读取各种格式的文件,它们如下所示:

  • read_csv
  • read_table
  • read_fwf
  • read_clipboard
  • read_excel
  • read_hdf
  • read_html
  • read_json
  • read_msgpack
  • read_pickle
  • read_sas
  • read_sql
  • read_stata
  • read_feather

读取Excel文件

注:要读取Excel文件,还需要安装另外一个库:xlrd

通过pip可以这样完成安装:


 1 sudo pip3 install xlrd 

安装完之后可以通过pip查看这个库的信息:

$  pip3 show xlrd

Name: xlrd

Version: 1.1.0

Summary: Library **for** developers **to** extract data from Microsoft Excel (tm) spreadsheet files

Home-page: http:*//www.python-excel.org/*

Author: John Machin

Author-email: sjmachin@lexicon.net

License: BSD

Location: /Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages

Requires:

接下来我们看一个读取Excel的简单的例子:

# file_operation.py

import pandas **as** pd

import numpy **as** np

df1= pd.read_excel("data/test.xlsx")

print("df1:\n{}\n".format(df1))

这个Excel的内容如下:

df1:

 C  Mon

0  D  Tue

1  E  Wed

2  F  Thu

3  G  Fri

4  A  Sat

5  B  Sun

注:本文的代码和数据文件可以通过文章开头提到的Github仓库获取。

读取CSV文件

下面,我们再来看读取CSV文件的例子。

第一个CSV文件内容如下:

$ cat test1.csv 

C,Mon

D,Tue

E,Wed

F,Thu

G,Fri

A,Sat

读取的方式也很简单:

# file_operation.py

df2= pd.read_csv("data/test1.csv")

print("df2:\n{}\n".format(df2))

我们再来看第2个例子,这个文件的内容如下:

$ cat test2.csv 

C|Mon

D|Tue

E|Wed

F|Thu

G|Fri

A|Sat

严格的来说,这并不是一个CSV文件了,因为它的数据并不是通过逗号分隔的。在这种情况下,我们可以通过指定分隔符的方式来读取这个文件,像这样:

# file_operation.py

df3= pd.read_csv("data/test2.csv", sep="|")

print("df3:\n{}\n".format(df3))

实际上,read_csv支持非常多的参数用来调整读取的参数,如下表所示:

参数 说明
path 文件路径
sep或者delimiterFrame 字段分隔符
header 列名的行数,默认是0(第一行)
index_col 列号或名称用作结果中的行索引
names 结果的列名称列表
skiprows 从起始位置跳过的行数
na_values 代替NA的值序列
comment 以行结尾分隔注释的字符
parse_dates 尝试将数据解析为datetime。默认为False
keep_date_col 如果将列连接到解析日期,保留连接的列。默认为False。
converters 列的转换器
dayfirst 当解析可以造成歧义的日期时,以内部形式存储。默认为False
data_parser 用来解析日期的函数
nrows 从文件开始读取的行数
参数 说明
iterator 返回一个TextParser对象,用于读取部分内容
chunksize 指定读取块的大小
skip_footer 文件末尾需要忽略的行数
verbose 输出各种解析输出的信息
encoding 文件编码
skip_footer 文件编码
squeeze 如果解析的数据只包含一列,则返回一个Series
thousands 千数量的分隔符

详细的read_csv函数说明请参见这里:pandas.read_csv

处理无效值

现实世界并非完美,我们读取到的数据常常会带有一些无效值。如果没有处理好这些无效值,将对程序造成很大的干扰。
对待无效值,主要有两种处理方法:直接忽略这些无效值;或者将无效值替换成有效值。
下面我先创建一个包含无效值的数据结构。然后通过pandas.isna函数来确认哪些值是无效的:

    # process_na.py

import pandas as pd
import numpy as np

df = pd.DataFrame([[1.0, np.nan, 3.0, 4.0],
                  [5.0, np.nan, np.nan, 8.0],
                  [9.0, np.nan, np.nan, 12.0],
                  [13.0, np.nan, 15.0, 16.0]])

print("df:\n{}\n".format(df));
print("df:\n{}\n".format(pd.isna(df)));****

这段代码输出如下:

    df:
      0   1     2     3
0   1.0 NaN   3.0   4.0
1   5.0 NaN   NaN   8.0
2   9.0 NaN   NaN  12.0
3  13.0 NaN  15.0  16.0

df:
       0     1      2      3
0  False  True  False  False
1  False  True   True  False
2  False  True   True  False
3  False  True  False  False

忽略无效值
我们可以通过pandas.DataFrame.dropna函数抛弃无效值:

    # process_na.py

print("df.dropna():\n{}\n".format(df.dropna()));

注:dropna默认不会改变原先的数据结构,而是返回了一个新的数据结构。如果想要直接更改数据本身,可以在调用这个函数的时候传递参数 inplace = True。
对于原先的结构,当无效值全部被抛弃之后,将不再是一个有效的DataFrame,因此这行代码输出如下:

    df.dropna():
Empty DataFrame
Columns: [0, 1, 2, 3]
Index: []

我们也可以选择抛弃整列都是无效值的那一列:

 # process_na.py

print("df.dropna(axis=1, how=‘all‘):\n{}\n".format(df.dropna(axis=1, how=‘all‘)));

注:axis=1表示列的轴。how可以取值’any’或者’all’,默认是前者。
这行代码输出如下:

    df.dropna(axis=1, how=‘all‘):
      0     2     3
0   1.0   3.0   4.0
1   5.0   NaN   8.0
2   9.0   NaN  12.0
3  13.0  15.0  16.0

替换无效值
我们也可以通过fillna函数将无效值替换成为有效值。像这样:

    # process_na.py

print("df.fillna(1):\n{}\n".format(df.fillna(1)));

这段代码输出如下:

  df.fillna(1):
      0    1     2     3
0   1.0  1.0   3.0   4.0
1   5.0  1.0   1.0   8.0
2   9.0  1.0   1.0  12.0
3  13.0  1.0  15.0  16.0

将无效值全部替换成同样的数据可能意义不大,因此我们可以指定不同的数据来进行填充。为了便于操作,在填充之前,我们可以先通过rename方法修改行和列的名称:

  # process_na.py

df.rename(index={0: ‘index1‘, 1: ‘index2‘, 2: ‘index3‘, 3: ‘index4‘},
          columns={0: ‘col1‘, 1: ‘col2‘, 2: ‘col3‘, 3: ‘col4‘},
          inplace=True);
df.fillna(value={‘col2‘: 2}, inplace=True)
df.fillna(value={‘col3‘: 7}, inplace=True)
print("df:\n{}\n".format(df));

这段代码输出如下:

    df:
        col1  col2  col3  col4
index1   1.0   2.0   3.0   4.0
index2   5.0   2.0   7.0   8.0
index3   9.0   2.0   7.0  12.0
index4  13.0   2.0  15.0  16.0

处理字符串
数据中常常牵涉到字符串的处理,接下来我们就看看pandas对于字符串操作。
Series的str字段包含了一系列的函数用来处理字符串。并且,这些函数会自动处理无效值。
下面是一些实例,在第一组数据中,我们故意设置了一些包含空格字符串:

 # process_string.py

import pandas as pd

s1 = pd.Series([‘ 1‘, ‘2 ‘, ‘ 3 ‘, ‘4‘, ‘5‘]);
print("s1.str.rstrip():\n{}\n".format(s1.str.lstrip()))
print("s1.str.strip():\n{}\n".format(s1.str.strip()))
print("s1.str.isdigit():\n{}\n".format(s1.str.isdigit()))

在这个实例中我们看到了对于字符串strip的处理以及判断字符串本身是否是数字,这段代码输出如下:

   s1.str.rstrip():
0     1
1    2
2    3
3     4
4     5
dtype: object

s1.str.strip():
0    1
1    2
2    3
3    4
4    5
dtype: object

s1.str.isdigit():
0    False
1    False
2    False
3     True
4     True
dtype: bool

下面是另外一些示例,展示了对于字符串大写,小写以及字符串长度的处理:

# process_string.py

s2 = pd.Series([‘Stairway to Heaven‘, ‘Eruption‘, ‘Freebird‘,
                    ‘Comfortably Numb‘, ‘All Along the Watchtower‘])
print("s2.str.lower():\n{}\n".format(s2.str.lower()))
print("s2.str.upper():\n{}\n".format(s2.str.upper()))
print("s2.str.len():\n{}\n".format(s2.str.len()))

该段代码输出如下:

  s2.str.lower():
0          stairway to heaven
1                    eruption
2                    freebird
3            comfortably numb
4    all along the watchtower
dtype: object

s2.str.upper():
0          STAIRWAY TO HEAVEN
1                    ERUPTION
2                    FREEBIRD
3            COMFORTABLY NUMB
4    ALL ALONG THE WATCHTOWER
dtype: object

s2.str.len():
0    18
1     8
2     8
3    16
4    24
dtype: int64

结束语

本文是pandas的入门教程,因此我们只介绍了最基本的操作。对于
?MultiIndex/Advanced Indexing
?Merge, join, concatenate
?Computational tools
之类的高级功能,以后有机会我们再来一起学习。
读者也可以根据下面的链接获取更多的知识。

更多Python技术文章请关注2019,Python技术持续更新(附教程)

原文地址:https://www.cnblogs.com/chuyang2017/p/10541665.html

时间: 2024-10-10 15:37:01

程序员用于机器学习编程的Python 数据处理库 pandas 入门教程的相关文章

程序员用于机器学习编程的Python 数据处理库 pandas 进阶教程

数据访问 在入门教程中,我们已经使用过访问数据的方法.这里我们再集中看一下. 注:这里的数据访问方法既适用于Series,也适用于DataFrame. **基础方法:[]和. 这是两种最直观的方法,任何有面向对象编程经验的人应该都很容易理解.下面是一个代码示例: # select_data.py import pandas **as** pd import numpy **as** np series1= pd.Series([1, 2, 3, 4, 5, 6, 7], index=["C&qu

程序员用于机器学习数据科学的3个顶级 Python 库

NumPy NumPy(数值 Python 的简称)是其中一个顶级数据科学库,它拥有许多有用的资源,从而帮助数据科学家把 Python 变成一个强大的科学分析和建模工具.NumPy 是在 BSD 许可证的许可下开源的,它是在科学计算中执行任务的基础 Python 库.SciPy 是一个更大的基于 Python 生态系统的开源工具,而 NumPy 是 SciPy 非常重要的一部分. NumPy 为 Python 提供了大量数据结构,从而能够轻松地执行多维数组和矩阵运算.除了用于求解线性代数方程和其

C#程序员的春天之从零开始学习unity3D游戏开发入门教程一(前言)

我们不在“拖控件”,我们也有春天 序言:之前断断续续谢了一点unity的教程,但是不全面.这里表示歉意.今天准备重新做一套.今天也是换了新工作,也是新的开始.也希望以此来激励自己把这个教程一直写下去.想要学习unity的同学可以加这个群(326535328),可能会在qq课堂在线讲解一些相关知识. 乱扯一下:为什么说这时C#程序员的春天呢?在大多数java或者其他程序员的眼里,我们.net平台的程序员同胞都背负着”拖控件“的这么一个标签.某种程度上讲,.net的快速入门的精髓就是拖控件.然而外人

写给程序员的机器学习入门 (一) - 从基础说起

前段时间因为店铺不能开门,我花了一些空余时间看了很多机器学习相关的资料,我发现目前的机器学习入门大多要不门槛比较高,要不过于着重使用而忽视基础原理,所以我决定开一个新的系列针对程序员讲讲机器学习.这个系列会从机器学习的基础原理开始一直讲到如何应用,看懂这个系列需要一定的编程知识(主要会使用 python 语言),但不需要过多的数学知识,并且对于涉及到的数学知识会作出简单的介绍.因为我水平有限(不是专业的机器学习工程师),这个系列不会讲的非常深入,看完可能也就只能做一个调参狗,各路大佬觉得哪些部分

程序员初学机器学习的四种方式

http://blog.jobbole.com/67621/ 本文由 伯乐在线 - XiaoxiaoLi 翻译.未经许可,禁止转载!英文出处:Jason Brownlee.欢迎加入翻译组. 学习机器学习有很多方法,大多数人选择从理论开始. 如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术.类库和方法.这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上. 要想有效地学习机器学习你必须学习相关理论,但是你可以利用你

程序员初学机器学习算法

英文原文:4 Self-Study Machine Learning Projects 学习机器学习有很多方法,大多数人选择从理论开始. 如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术.类库和方法.这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上. 要想有效地学习机器学习你必须学习相关理论,但是你可以利用你的兴趣及对知识的渴望,来激励你从实际例子学起,然后再步入对算法的数学理解. 通过本文你可以学习到程序员

黑马程序员_Java网络编程

1,IP地址和InetAddress IP地址是互联网上每台计算机都有的自己的标记,IP地址分为5类,A类保留给政府,B类给中等规模的公司,C类给任何需要的人,D类用于组播,E类用于实验. A类  1.0.0.1-126.255.255.254  B类  128.0.0.1-191.255.255.254   C类  192.0.0.1-223.255.255.254  D类 244.0.0.1-239.255.255.254 E类 240.0.0.1-255.255.255.254 在以后开发

程序员教流浪汉编程,开发APP

panpan @ 2013.10.05 , 09:34 am 一天,Patrick McConlogue宣布他将要教一个流浪汉学Java语言,帮助他开发一个属于他自己的app.今年23岁的Patrick是一名软件工程师,每天在去上班的路上他都会遇见那个流浪汉,然后他就决定践行自己的一个主意,看看他会不会是那个人. “这个主意很简单.”Patrick在自己的网站上写道: 1.我明天再路过时给你100美元.2.我明天再路过时给你三本JavaScript教程(入门级.高级.专家级)和一台便宜的笔记本.

至少50%程序员不会编程

50%以上的程序员不会编程,只是懂点语法而已,50%是保守数字.或许有80%,从我身边人来看,一家较大的上市公司,码农千余人. 就像大多数学生学了十年英语,背了堆单次,但写不出来英语作文一样 程序=算法+数据结构 而对于嵌入式程序员,不止如此 嵌入式程序=x*算法+y*数据结构+z*计算机体系结构+t*操作系统 计算机体系结构泛指各种硬件体系结构,比如磁盘.内存.usb总线,pcie总线.sata控制器,网卡,gpio,i2c,等等等等,当然包括CPU指令集,外设接口,各种控制器,寄存器,甚至汇