借教室 差分+二分答案

题目描述

在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。

面对海量租借教室的信息,我们自然希望编程解决这个问题。

我们需要处理接下来nnn天的借教室信息,其中第iii天学校有rir_iri?个教室可供租借。共有mmm份订单,每份订单用三个正整数描述,分别为dj,sj,tjd_j,s_j,t_jdj?,sj?,tj?,表示某租借者需要从第sjs_jsj?天到第tjt_jtj?天租借教室(包括第sjs_jsj?天和第tjt_jtj?天),每天需要租借djd_jdj?个教室。

我们假定,租借者对教室的大小、地点没有要求。即对于每份订单,我们只需要每天提供djd_jdj?个教室,而它们具体是哪些教室,每天是否是相同的教室则不用考虑。

借教室的原则是先到先得,也就是说我们要按照订单的先后顺序依次为每份订单分配教室。如果在分配的过程中遇到一份订单无法完全满足,则需要停止教室的分配,通知当前申请人修改订单。这里的无法满足指从第sjs_jsj?天到第tjt_jtj?天中有至少一天剩余的教室数量不足djd_jdj?个。

现在我们需要知道,是否会有订单无法完全满足。如果有,需要通知哪一个申请人修改订单。

输入输出格式

输入格式:

第一行包含两个正整数n,mn,mn,m,表示天数和订单的数量。

第二行包含nnn个正整数,其中第iii个数为rir_iri?,表示第iii天可用于租借的教室数量。

接下来有mmm行,每行包含三个正整数dj,sj,tjd_j,s_j,t_jdj?,sj?,tj?,表示租借的数量,租借开始、结束分别在第几天。

每行相邻的两个数之间均用一个空格隔开。天数与订单均用从111开始的整数编号。

输出格式:

如果所有订单均可满足,则输出只有一行,包含一个整数0 00。否则(订单无法完全满足)

输出两行,第一行输出一个负整数?1-1?1,第二行输出需要修改订单的申请人编号。

输入输出样例

输入样例#1:
复制

4 3
2 5 4 3
2 1 3
3 2 4
4 2 4

输出样例#1: 复制

-1
2

说明

【输入输出样例说明】

第 11 1份订单满足后,44 4天剩余的教室数分别为 0,3,2,30,3,2,30,3,2,3。第 222 份订单要求第 22 2天到第 444 天每天提供3 3 3个教室,而第 333 天剩余的教室数为2 22,因此无法满足。分配停止,通知第222 个申请人修改订单。

【数据范围】

对于10%的数据,有1≤n,m≤101≤ n,m≤ 101≤n,m≤10;

对于30%的数据,有1≤n,m≤10001≤ n,m≤10001≤n,m≤1000;

对于 70%的数据,有1≤n,m≤1051 ≤ n,m ≤ 10^51≤n,m≤105;

对于 100%的数据,有1≤n,m≤106,0≤ri,dj≤109,1≤sj≤tj≤n1 ≤ n,m ≤ 10^6,0 ≤ r_i,d_j≤ 10^9,1 ≤ s_j≤ t_j≤ n1≤n,m≤106,0≤ri?,dj?≤109,1≤sj?≤tj?≤n。

NOIP 2012 提高组 第二天 第二题

答案具有单调性,所以我们可以二分来判断x组以前是否都满足;

由于是区间问题,所以我们用差分数组dt来修改,

最后求某一项就是前缀和即

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 1000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long  ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-4
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
	ll x = 0;
	char c = getchar();
	bool f = false;
	while (!isdigit(c)) {
		if (c == ‘-‘) f = true;
		c = getchar();
	}
	while (isdigit(c)) {
		x = (x << 1) + (x << 3) + (c ^ 48);
		c = getchar();
	}
	return f ? -x : x;
}

ll gcd(ll a, ll b) {
	return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }

/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
	if (!b) {
		x = 1; y = 0; return a;
	}
	ans = exgcd(b, a%b, x, y);
	ll t = x; x = y; y = t - a / b * y;
	return ans;
}
*/
int n, m;
int rest[maxn];
int l[maxn], r[maxn], d[maxn];
int dt[maxn];
int tmp[maxn];
bool chk(int x) {
	ms(dt); ms(tmp);
	for (int i = 1; i <= x; i++) {
		dt[l[i]] += d[i]; dt[r[i] + 1] -= d[i];
	}
	for (int i = 1; i <= n; i++) {
		tmp[i] = tmp[i - 1] + dt[i];
		if (tmp[i] > rest[i])return false;
	}
	return true;
}

int main() {
	//ios::sync_with_stdio(0);
	cin >> n >> m;
	for (int i = 1; i <= n; i++)rdint(rest[i]);
	for (int i = 1; i <= m; i++) {
		rdint(d[i]);
		rdint(l[i]); rdint(r[i]);
	}
	if (chk(m))cout << 0 << endl;
	else {
		int l = 1, r = m;
		while (l <= r) {
			int mid = (l + r) / 2;
			if (chk(mid))l = mid + 1;
			else r = mid - 1;
		}
		cout << -1 << endl << l << endl;
	}
	return 0;
}

可;

原文地址:https://www.cnblogs.com/zxyqzy/p/10290176.html

时间: 2024-11-04 23:18:05

借教室 差分+二分答案的相关文章

Luogu P1083 借教室【二分答案/差分】By cellur925

题目描述 Description 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要 向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然希望编程解决这个问题. 我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借.共有m份 订单,每份订单用三个正整数描述,分别为dj, sj, tj,表示某租借者需要从第sj天到第tj天租 借教室(包括第sj天和第tj天),每天需要租借dj个教室. 我们假定

Luogu 1083【NOIP2012】借教室【二分答案】

题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然希望编程解决这个问题. 我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借.共有m份订单,每份订单用三个正整数描述,分别为dj,sj,tj,表示某租借者需要从第sj天到第tj天租借教室(包括第sj天和第tj天),每天需要租借dj个教室. 我们假定,租借者对教室的大小.地点没有要求

NOIP2012借教室[线段树|离线 差分 二分答案]

题目描述 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要 向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样. 面对海量租借教室的信息,我们自然希望编程解决这个问题. 我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借.共有m份 订单,每份订单用三个正整数描述,分别为dj,sj,tj,表示某租借者需要从第sj天到第tj天租 借教室(包括第sj天和第tj天),每天需要租借dj个教室. 我们假定,租借者对教室的大小.地点没

NOIp2015 运输计划 [LCA] [树上差分] [二分答案]

我太懒了 吃掉了题面 题解 & 吐槽 一道很好的树上差分练习题. 不加fread勉强a过bzoj和luogu的数据,加了fread才能在uoj里卡过去. 可以发现,答案则是运输计划里花费的最大值,最大值最小,便是二分答案的标志. 那么该怎么check呢... 我们得找出所有超过限制的计划,这个过程可以在LCA倍增的过程中预处理出来. 然后再找出一些被这些计划都覆盖的边,找到最大的那条边,如果最大的计划花费减去最大的那条边小于x,那么x就是可行的. 但是该怎么找到那些被计划都覆盖的边呢... 我们

P1083 借教室 差分数组

第一行包含两个正整数n,mn,m,表示天数和订单的数量. 第二行包含nn个正整数,其中第ii个数为r_iri?,表示第ii天可用于租借的教室数量. 接下来有mm行,每行包含三个正整数d_j,s_j,t_jdj?,sj?,tj?,表示租借的数量,租借开始.结束分别在第几天. 每行相邻的两个数之间均用一个空格隔开.天数与订单均用从11开始的整数编号. 输出格式: 如果所有订单均可满足,则输出只有一行,包含一个整数00.否则(订单无法完全满足) 输出两行,第一行输出一个负整数-1−1,第二行输出需要修

Noip2015 运输计划 树上差分 二分答案

Code: #include<cstring> #include<cstdio> #include<algorithm> #include<string> using namespace std; void setIO(string a){freopen((a+".in").c_str(),"r",stdin);} #define maxn 300090 #define logn 20 int head[maxn],t

洛谷P1083 借教室 二分 + 差分

洛谷P1083 借教室 二分 + 差分(或说前缀和,其实前缀和更准确一点) 首先二分答案,即取 mid 个人,且他们不会冲突 然后O(n) 判断是否冲突 如何判断呢,首先我们发现 一个人的操作相当于是将 一些连续的山削去了一个高度 然后我们可以记录这座山被消了多少高度,但这样一次就要 O(N) 总共(n^2) 但是我们发现高度差只有两个地方变了,一个是起始,一个是终止 t[ i ] 表示 h[ i ] - h[ i-1 ] 改变过后 于是 t[ s ]-=d,t[ t+1 ]+=d ; 然后这样

浅谈差分数组的应用(二)&amp;[NOIP2012]借教室题解

[NOIP2012提高&洛谷P1083]借教室 Description 在大学期间,经常需要租借教室.大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室.教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样.面对海量租借教室的信息,我们自然希望编程解决这个问题. 我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借.共有m份订单,每份订单用三个正整数描述,分别为dj,sj,tj,表示某租借者需要从第sj天到第tj天租借教室(包括第sj天和第tj天),每天需要

不用二分的借教室

在网上一直看到用二分做的借教室,说什么线段树会惨遭TLE,然后我就试了一下,并没有什么事情发生(或许是因为optimizi(2)...),但并没有什么关系!!! 我们只需要在每个树的节点上打上mi的标记,表示其子树的最小值,在更新的时候如果mi小于0,就知道不行了,标记一下直接输出就好了... 详见代码: #include<bits/stdc++.h> #pragma GCC optimize(2) #define in1(x) scanf("%d",&x) #de