ARM设备树

学习目标:学习设备树相关内容;

一、概念

在Linux 2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/mach-xxx,在kernel中存在大量的冗余编码。采用Device Tree后,许多硬件的细节可以直接透过它传递给Linux。Device Tree是一种描述硬件的数据结构,它起源于 OpenFirmware (OF)。 Device Tree由一系列被命名的结点(node)和属性(property)组成,而结点本身可包含子结点。所谓属性,其实就是成对出现的name和value。

  在Device Tree中,可描述的信息:

  1. CPU的数量和类别
  2. 内存基地址和大小
  3. 总线和桥
  4. 外设连接
  5. 中断控制器和中断使用情况
  6. GPIO控制器和GPIO使用情况
  7. Clock控制器和Clock使用情况

它基本上就是画一棵电路板上CPU、总线、设备组成的树,Bootloader会将这棵树传递给内核,然后内核可以识别这棵树,并根据它展开出Linux内核中的platform_device、i2c_client、spi_device等设备,而这些设备用到的内存、IRQ等资源,也被传递给了内核,内核会将这些资源绑定给展开的相应的设备。

二、Device Tree组成和结构

整个Device Tree牵涉面比较广,即增加了新的用于描述设备硬件信息的文本格式,又增加了编译这一文本的工具,同时Bootloader也需要支持将编译后的Device Tree传递给Linux内核。

  • DTS (device tree source)

  .dts文件是一种ASCII 文本格式的Device Tree描述,此文本格式非常人性化,适合人类的阅读习惯。基本上,在ARM Linux在,一个.dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。由于一个SoC可能对应多个machine(一个SoC可以对应多个产品和电路板),势必这些.dts文件需包含许多共同的部分,Linux内核为了简化,把SoC公用的部分或者多个machine共同的部分一般提炼为.dtsi,类似于C语言的头文件。其他的machine对应的.dts就include这个.dtsi。譬如,对于VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用, vexpress-v2p-ca9.dts有如下一行:

/include/ "vexpress-v2m.dtsi"

其中,和C语言的头文件类似,.dtsi也可以include其他的.dtsi,譬如几乎所有的ARM SoC的.dtsi都引用了skeleton.dtsi。

结点和属性为.dts(或者其include的.dtsi)基本元素:

 1     [plain] view plaincopy
 2
 3         / {
 4             node1 {
 5                 a-string-property = "A string";
 6                 a-string-list-property = "first string", "second string";
 7                 a-byte-data-property = [0x01 0x23 0x34 0x56];
 8                 child-node1 {
 9                     first-child-property;
10                     second-child-property = <1>;
11                     a-string-property = "Hello, world";
12                 };
13                 child-node2 {
14                 };
15             };
16             node2 {
17                 an-empty-property;
18                 a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */
19                 child-node1 {
20                 };
21             };
22         };  

上述.dts文件基本表征了一个Device Tree源文件的结构:

1个root结点"/";

root结点下面含一系列子结点,本例中为"node1" 和 "node2";结点"node1"下又含有一系列子结点,本例中为"child-node1" 和 "child-node2";各结点都有一系列属性。这些属性可能为空,如" an-empty-property";可能为字符串,如"a-string-property";可能为字符串数组,如"a-string-list-property";可能为Cells(由u32整数组成),如"second-child-property",可能为二进制数,如"a-byte-data-property"。

例程:下面以一个最简单的machine为例来看如何写一个.dts文件。

假设此machine的配置如下:

1个双核ARM Cortex-A9 32位处理器; ARM的local bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和 0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10170000)、中断控制器(位于0x10140000)和一个external bus桥; External bus桥上又连接了SMC SMC91111 Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR Flash(位于0x30000000); External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim DS1338实时钟(I2C地址为0x58)。

其对应的.dts文件为:

 1     [plain] view plaincopy
 2         / {
 3             compatible = "acme,coyotes-revenge";
 4             #address-cells = <1>;
 5             #size-cells = <1>;
 6             interrupt-parent = <&intc>;
 7            
 8             cpus {
 9                 #address-cells = <1>;
10                 #size-cells = <0>;
11                 cpu@0 {
12                     compatible = "arm,cortex-a9";
13                     reg = <0>;
14                 };
15                 cpu@1 {
16                     compatible = "arm,cortex-a9";
17                     reg = <1>;
18                 };
19             };
20
21             serial@101f0000 {
22                 compatible = "arm,pl011";
23                 reg = <0x101f0000 0x1000 >;
24                 interrupts = < 1 0 >;
25             };
26
27             serial@101f2000 {
28                 compatible = "arm,pl011";
29                 reg = <0x101f2000 0x1000 >;
30                 interrupts = < 2 0 >;
31             };
32
33             gpio@101f3000 {
34                 compatible = "arm,pl061";
35                 reg = <0x101f3000 0x1000
36                        0x101f4000 0x0010>;
37                 interrupts = < 3 0 >;
38             };
39
40             intc: interrupt-controller@10140000 {
41                 compatible = "arm,pl190";
42                 reg = <0x10140000 0x1000 >;
43                 interrupt-controller;
44                 #interrupt-cells = <2>;
45             };
46
47             spi@10115000 {
48                 compatible = "arm,pl022";
49                 reg = <0x10115000 0x1000 >;
50                 interrupts = < 4 0 >;
51             };
52
53             external-bus {
54                 #address-cells = <2>
55                 #size-cells = <1>;
56                 ranges = <0 0  0x10100000   0x10000     // Chipselect 1, Ethernet
57                           1 0  0x10160000   0x10000     // Chipselect 2, i2c controller
58                           2 0  0x30000000   0x1000000>; // Chipselect 3, NOR Flash
59
60                 ethernet@0,0 {
61                     compatible = "smc,smc91c111";
62                     reg = <0 0 0x1000>;
63                     interrupts = < 5 2 >;
64                 };
65
66                 i2c@1,0 {
67                     compatible = "acme,a1234-i2c-bus";
68                     #address-cells = <1>;
69                     #size-cells = <0>;
70                     reg = <1 0 0x1000>;
71                     interrupts = < 6 2 >;
72                     rtc@58 {
73                         compatible = "maxim,ds1338";
74                         reg = <58>;
75                         interrupts = < 7 3 >;
76                     };
77                 };
78
79                 flash@2,0 {
80                     compatible = "samsung,k8f1315ebm", "cfi-flash";
81                     reg = <2 0 0x4000000>;
82                 };
83             };
84         };  

上述.dts文件中,root结点"/"的compatible 属性compatible = "acme,coyotes-revenge";定义了系统的名称,它的组织形式为:<manufacturer>,<model>。Linux内核透过root结点"/"的compatible 属性即可判断它启动的是什么machine。

  在.dts文件的每个设备,都有一个compatible 属性,compatible属性是用户驱动和设备的绑定。compatible 属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式为"<manufacturer>,<model>",其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更广的范围。

例如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:

    [plain] view plaincopy

        flash@0,00000000 {
             compatible = "arm,vexpress-flash", "cfi-flash";
             reg = <0 0x00000000 0x04000000>,
             <1 0x00000000 0x04000000>;
             bank-width = <4>;
         };  

compatible属性的第2个字符串"cfi-flash"明显比第1个字符串"arm,vexpress-flash"涵盖的范围更广。

再比如,Freescale MPC8349 SoC含一个串口设备,它实现了国家半导体(National Semiconductor)的ns16550 寄存器接口。则MPC8349串口设备的compatible属性为compatible = "fsl,mpc8349-uart", "ns16550"。其中,fsl,mpc8349-uart指代了确切的设备, ns16550代表该设备与National Semiconductor 的16550 UART保持了寄存器兼容。

接下来.dts文件,root结点"/"的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible 属性为"arm,cortex-a9"。

注意:cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:<name>[@<unit-address>],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如3com Ethernet适配器对应的结点name宜为ethernet,而不是3com509。如果一个结点描述的设备有地址,则应该给出@unit-address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中给出。ePAPR标准给出了结点命名的规范。

可寻址的设备使用如下信息来在Device Tree中编码地址信息:

  reg
  #address-cells
  #size-cells

其中,reg的组织形式为reg = <address1 length1 [address2 length2] [address3 length3] ... >,其中的每一组address length表明了设备使用的一个地址范围。

address为1个或多个32位的整型(即cell),而length则为cell的列表或者为空(如#size-cells = 0)。address 和 length 字段是可变长的,父结点的#address-cells和#size-cells分别决定了子结点的reg属性的address和length字段的长度。

在本例中,

1)root结点的#address-cells = <1>;和#size-cells = <1>;决定了serial、gpio、spi等结点的address和length字段的长度分别为1。

2)cpus 结点的#address-cells = <1>;和#size-cells = <0>;决定了2个cpu子结点的address为1,而length为空,于是形成了2个cpu的reg = <0>;和reg = <1>;。

3)external-bus结点的#address-cells = <2>和#size-cells = <1>;决定了其下的ethernet、i2c、flash的reg字段形如reg = <0 0 0x1000>;、reg = <1 0 0x1000>;和reg = <2 0 0x4000000>;。其中,address字段长度为0,开始的第一个cell(0、1、2)是对应的片选,第2个cell(0,0,0)是相对该片选的基地址,第3个cell(0x1000、0x1000、0x4000000)为length。特别要留意的是i2c结点中定义的 #address-cells = <1>;和#size-cells = <0>;又作用到了I2C总线上连接的RTC,它的address字段为0x58,是设备的I2C地址。

root结点的子结点描述的是CPU的视图,因此root子结点的address区域就直接位于CPU的memory区域。但是,经过总线桥后的address往往需要经过转换才能对应CPU的memory映射。external-bus的ranges属性定义了经过external-bus桥后的地址范围如何映射到CPU的memory区域。

1     [plain] view plaincopy
2
3         ranges = <0 0  0x10100000   0x10000     // Chipselect 1, Ethernet
4                   1 0  0x10160000   0x10000     // Chipselect 2, i2c controller
5                   2 0  0x30000000   0x1000000>; // Chipselect 3, NOR Flash  

ranges是地址转换表,其中的每个项目是一个子地址、父地址以及在子地址空间的大小的映射。映射表中的子地址、父地址分别采用子地址空间的#address-cells和父地址空间的#address-cells大小。对于本例而言,子地址空间的#address-cells为2,父地址空间的#address-cells值为1,因此0 0 0x10100000 0x10000的前2个cell为external-bus后片选0上偏移0,第3个cell表示external-bus后片选0上偏移0的地址空间被映射到CPU的0x10100000位置,第4个cell表示映射的大小为0x10000。ranges的后面2个项目的含义可以类推。

  Device Tree中还可以中断连接信息,对于中断控制器而言,它提供如下属性:interrupt-controller – 这个属性为空,中断控制器应该加上此属性表明自己的身份;

#interrupt-cells – 与#address-cells 和 #size-cells相似,它表明连接此中断控制器的设备的interrupts属性的cell大小。

  在整个Device Tree中,与中断相关的属性还包括:interrupt-parent – 设备结点透过它来指定它所依附的中断控制器的phandle,当结点没有指定interrupt-parent 时,则从父级结点继承。

对于本例而言,root结点指定了interrupt-parent = <&intc>;其对应于intc: interrupt-controller@10140000,而root结点的子结点并未指定interrupt-parent,因此它们都继承了intc,即位于0x10140000的中断控制器。

interrupts – 用到了中断的设备结点透过它指定中断号、触发方法等,具体这个属性含有多少个cell,由它依附的中断控制器结点的#interrupt-cells属性决定。而具体每个cell又是什么含义,一般由驱动的实现决定,而且也会在Device Tree的binding文档中说明。譬如,对于ARM GIC中断控制器而言,#interrupt-cells为3,它3个cell的具体含义Documentation/devicetree/bindings/arm/gic.txt就有如下文字说明:

[plain] view plaincopy

    01   The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI interrupts.
    03
    04   The 2nd cell contains the interrupt number for the interrupt type.
    05   SPI interrupts are in the range [0-987].  PPI interrupts are in the range [0-15].
    07
    08   The 3rd cell is the flags, encoded as follows:
    09         bits[3:0] trigger type and level flags.
    10                 1 = low-to-high edge triggered
    11                 2 = high-to-low edge triggered
    12                 4 = active high level-sensitive
    13                 8 = active low level-sensitive
    14         bits[15:8] PPI interrupt cpu mask.  Each bit corresponds to each of the 8 possible cpus attached to the GIC.  A bit set to ‘1‘ indicated the interrupt is wired to that CPU.  Only valid for PPI interrupts.  

另外,值得注意的是,一个设备还可能用到多个中断号。对于ARM GIC而言,若某设备使用了SPI的168、169号2个中断而言,都是高电平触发,则该设备结点的interrupts属性可定义为:interrupts = <0 168 4>, <0 169 4>;

  除了中断以外,在ARM Linux中clock、GPIO、pinmux都可以透过.dts中的结点和属性进行描述。 DTC (device tree compiler): 将.dts编译为.dtb的工具。DTC的源代码位于内核的scripts/dtc目录,在Linux内核使能了Device Tree的情况下,编译内核的时候主机工具dtc会被编译出来,对应scripts/dtc/Makefile中的“hostprogs-y := dtc”这一hostprogs编译target。在Linux内核的arch/arm/boot/dts/Makefile中,描述了当某种SoC被选中后,哪些.dtb文件会被编译出来,如与VEXPRESS对应的.dtb包括:

1 [plain] view plaincopy
2
3     dtb-$(CONFIG_ARCH_VEXPRESS) += vexpress-v2p-ca5s.dtb \
4             vexpress-v2p-ca9.dtb \
5             vexpress-v2p-ca15-tc1.dtb \
6             vexpress-v2p-ca15_a7.dtb \
7             xenvm-4.2.dtb  

在Linux下,我们可以单独编译Device Tree文件。当我们在Linux内核下运行make dtbs时,若我们之前选择了ARCH_VEXPRESS,上述.dtb都会由对应的.dts编译出来。因为arch/arm/Makefile中含有一个dtbs编译target项目。

* Device Tree Blob (.dtb)

   .dtb是.dts被DTC编译后的二进制格式的Device Tree描述,可由Linux内核解析。通常在我们为电路板制作NAND、SD启动image时,会为.dtb文件单独留下一个很小的区域以存放之,之后bootloader在引导kernel的过程中,会先读取该.dtb到内存。

 * Binding

   对于Device Tree中的结点和属性具体是如何来描述设备的硬件细节的,一般需要文档来进行讲解,文档的后缀名一般为.txt。这些文档位于内核的Documentation/devicetree/bindings目录,其下又分为很多子目录。

 * Bootloader

   Uboot mainline 从 v1.1.3开始支持Device Tree,其对ARM的支持则是和ARM内核支持Device Tree同期完成。为了使能Device Tree,需要编译Uboot的时候在config文件中加入:

#define CONFIG_OF_LIBFDT
  • :在Uboot中,可以从NAND、SD或者TFTP等任意介质将.dtb读入内存,假设.dtb放入的内存地址为0x71000000,之后可在Uboot运行命令fdt addr命令设置.dtb的地址,如:
U-Boot> fdt addr 0x71000000

  fdt的其他命令就变地可以使用,如fdt resize、fdt print等。对于ARM来讲,可以透过bootz kernel_addr initrd_address dtb_address的命令来启动内核,即dtb_address作为bootz或者bootm的最后一次参数,第一个参数为内核映像的地址,第二个参数为initrd的地址,若不存在initrd,可以用 -代替。

3. Device Tree引发的BSP和驱动变更

有了Device Tree后,大量的板级信息都不再需要,譬如过去经常在arch/arm/plat-xxx和arch/arm/mach-xxx实施的如下事情:

1. 注册platform_device,绑定resource,即内存、IRQ等板级信息。透过Device Tree后,形如

90 static struct resource xxx_resources[] = {
   91         [0] = {
   92                 .start  = …,
   93                 .end    = …,
   94                 .flags  = IORESOURCE_MEM,
   95         },
   96         [1] = {
   97                 .start  = …,
   98                 .end    = …,
   99                 .flags  = IORESOURCE_IRQ,
   100         },
   101 };
   102
   103 static struct platform_device xxx_device = {
   104         .name           = "xxx",
   105         .id             = -1,
   106         .dev            = {
   107                                 .platform_data          = &xxx_data,
   108         },
   109         .resource       = xxx_resources,
   110         .num_resources  = ARRAY_SIZE(xxx_resources),
   111 };  

之类的platform_device代码都不再需要,其中platform_device会由kernel自动展开。而这些resource实际来源于.dts中设备结点的reg、interrupts属性。

  典型地,大多数总线都与“simple_bus”兼容,而在SoC对应的machine的.init_machine成员函数中,调用of_platform_bus_probe(NULL, xxx_of_bus_ids, NULL);即可自动展开所有的platform_device。譬如,假设我们有个XXX SoC,则可在arch/arm/mach-xxx/的板文件中透过如下方式展开.dts中的设备结点对应的platform_device:

   18 static struct of_device_id xxx_of_bus_ids[] __initdata = {
   19         { .compatible = "simple-bus", },
   20         {},
   21 };
   22
   23 void __init xxx_mach_init(void)
   24 {
   25         of_platform_bus_probe(NULL, xxx_of_bus_ids, NULL);
   26 }
   32
   33 #ifdef CONFIG_ARCH_XXX
   38
   39 DT_MACHINE_START(XXX_DT, "Generic XXX (Flattened Device Tree)")
   41         …
   45         .init_machine   = xxx_mach_init,
   46         …
   49 MACHINE_END
   50 #endif  

2. 注册i2c_board_info,指定IRQ等板级信息。

例如:

          static struct i2c_board_info __initdata afeb9260_i2c_devices[] = {
   146         {
   147                 I2C_BOARD_INFO("tlv320aic23", 0x1a),
   148         }, {
   149                 I2C_BOARD_INFO("fm3130", 0x68),     150         }, {
   151                 I2C_BOARD_INFO("24c64", 0x50),
   152         },
   153 };  

的代码目前不再需要出现,现在只需要把tlv320aic23、fm3130、24c64这些设备结点填充作为相应的I2C_controller结点的子结点即可,类似于前面的

       i2c@1,0 {
             compatible = "acme,a1234-i2c-bus";
             …
             rtc@58 {
                 compatible = "maxim,ds1338";
                 reg = <58>;
                 interrupts = < 7 3 >;
             };
         };  

Device Tree中的I2C_client会透过I2C_host驱动的probe()函数中调用of_i2c_register_devices(&i2c_dev->adapter);被自动展开。

3. 注册spi_board_info,指定IRQ等板级信息。

例如:

       79 static struct spi_board_info afeb9260_spi_devices[] = {
       80         {       /* DataFlash chip */
       81                 .modalias       = "mtd_dataflash",
       82                 .chip_select    = 1,
       83                 .max_speed_hz   = 15 * 1000 * 1000,
       84                 .bus_num        = 0,
       85         },
       86 };  

之类的spi_board_info代码,目前不再需要出现,与I2C类似,现在只需要把mtd_dataflash之类的结点,作为SPI控制器的子结点即可,SPI host驱动的probe函数透过spi_register_master()注册master的时候,会自动展开依附于它的slave。

4. 多个针对不同电路板的machine,以及相关的callback。

过去,ARM Linux针对不同的电路板会建立由MACHINE_START和MACHINE_END包围起来的针对这个machine的一系列callback,譬如:

373 MACHINE_START(VEXPRESS, "ARM-Versatile Express")
   374         .atag_offset    = 0x100,
   375         .smp            = smp_ops(vexpress_smp_ops),
   376         .map_io         = v2m_map_io,
   377         .init_early     = v2m_init_early,
   378         .init_irq       = v2m_init_irq,
   379         .timer          = &v2m_timer,
   380         .handle_irq     = gic_handle_irq,
   381         .init_machine   = v2m_init,
   382         .restart        = vexpress_restart,
   383 MACHINE_END  

Linux倡导针对多个SoC、多个电路板的通用DT machine,即一个DT machine的.dt_compat表含多个电路板.dts文件的root结点compatible属性字符串。之后,如果的电路板的初始化序列不一样,可以透过int of_machine_is_compatible(const char *compat) API判断具体的电路板是什么,例如:arch/arm/mach-exynos/mach-exynos5-dt.c的EXYNOS5_DT machine同时兼容"samsung,exynos5250"和"samsung,exynos5440"。

158 static char const *exynos5_dt_compat[] __initdata = {
   159         "samsung,exynos5250",
   160         "samsung,exynos5440",
   161         NULL
   162 };
   163
   177 DT_MACHINE_START(EXYNOS5_DT, "SAMSUNG EXYNOS5 (Flattened Device Tree)")
   178         /* Maintainer: Kukjin Kim <kgene.kim@samsung.com> */
   179         .init_irq       = exynos5_init_irq,
   180         .smp            = smp_ops(exynos_smp_ops),
   181         .map_io         = exynos5_dt_map_io,
   182         .handle_irq     = gic_handle_irq,
   183         .init_machine   = exynos5_dt_machine_init,
   184         .init_late      = exynos_init_late,
   185         .timer          = &exynos4_timer,
   186         .dt_compat      = exynos5_dt_compat,
   187         .restart        = exynos5_restart,
   188         .reserve        = exynos5_reserve,
   189 MACHINE_END  

它的.init_machine成员函数就针对不同的machine进行了不同的分支处理。

26 static void __init exynos5_dt_machine_init(void)
   127 {
   128         …
   149
   150         if (of_machine_is_compatible("samsung,exynos5250"))
   151                 of_platform_populate(NULL, of_default_bus_match_table,
   152                                      exynos5250_auxdata_lookup, NULL);
   153         else if (of_machine_is_compatible("samsung,exynos5440"))
   154                 of_platform_populate(NULL, of_default_bus_match_table,
   155                                      exynos5440_auxdata_lookup, NULL);
   156 }  

使用Device Tree后,驱动需要与.dts中描述的设备结点进行匹配,从而引发驱动的probe()函数执行。对于platform_driver而言,需要添加一个OF匹配表,如前文的.dts文件的"acme,a1234-i2c-bus"兼容I2C控制器结点的OF匹配表可以是:

       436 static const struct of_device_id a1234_i2c_of_match[] = {
       437         { .compatible = "acme,a1234-i2c-bus ", },
       438         {},
       439 };
       440 MODULE_DEVICE_TABLE(of, a1234_i2c_of_match);
       441
       442 static struct platform_driver i2c_a1234_driver = {
       443         .driver = {
       444                 .name = "a1234-i2c-bus ",
       445                 .owner = THIS_MODULE,
       449                 .of_match_table = a1234_i2c_of_match,
       450         },
       451         .probe = i2c_a1234_probe,
       452         .remove = i2c_a1234_remove,
       453 };
       454 module_platform_driver(i2c_a1234_driver);  

对于I2C和SPI从设备而言,同样也可以透过of_match_table添加匹配的.dts中的相关结点的compatible属性,如sound/soc/codecs/wm8753.c中的:

       1533 static const struct of_device_id wm8753_of_match[] = {
       1534         { .compatible = "wlf,wm8753", },
       1535         { }
       1536 };
       1537 MODULE_DEVICE_TABLE(of, wm8753_of_match);
       1587 static struct spi_driver wm8753_spi_driver = {
       1588         .driver = {
       1589                 .name   = "wm8753",
       1590                 .owner  = THIS_MODULE,
       1591                 .of_match_table = wm8753_of_match,
       1592         },
       1593         .probe          = wm8753_spi_probe,
       1594         .remove         = wm8753_spi_remove,
       1595 };
       1640 static struct i2c_driver wm8753_i2c_driver = {
       1641         .driver = {
       1642                 .name = "wm8753",
       1643                 .owner = THIS_MODULE,
       1644                 .of_match_table = wm8753_of_match,
       1645         },
       1646         .probe =    wm8753_i2c_probe,
       1647         .remove =   wm8753_i2c_remove,
       1648         .id_table = wm8753_i2c_id,
       1649 };  

不过这边有一点需要提醒的是,I2C和SPI外设驱动和Device Tree中设备结点的compatible 属性还有一种弱式匹配方法,就是别名匹配。compatible 属性的组织形式为<manufacturer>,<model>,别名其实就是去掉compatible 属性中逗号前的manufacturer前缀。关于这一点,可查看drivers/spi/spi.c的源代码,函数spi_match_device()暴露了更多的细节,如果别名出现在设备spi_driver的id_table里面,或者别名与spi_driver的name字段相同,SPI设备和驱动都可以匹配上:

       90 static int spi_match_device(struct device *dev, struct device_driver *drv)
       91 {
       92         const struct spi_device *spi = to_spi_device(dev);
       93         const struct spi_driver *sdrv = to_spi_driver(drv);
       94
       95         /* Attempt an OF style match */
       96         if (of_driver_match_device(dev, drv))
       97                 return 1;
       98
       99         /* Then try ACPI */
       100         if (acpi_driver_match_device(dev, drv))
       101                 return 1;
       102
       103         if (sdrv->id_table)
       104                 return !!spi_match_id(sdrv->id_table, spi);
       105
       106         return strcmp(spi->modalias, drv->name) == 0;
       107 }
       71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
       72                                                 const struct spi_device *sdev)
       73 {
       74         while (id->name[0]) {
       75                 if (!strcmp(sdev->modalias, id->name))
       76                         return id;
       77                 id++;
       78         }
       79         return NULL;
       80 }  

4. 常用OF API

在Linux的BSP和驱动代码中,还经常会使用到Linux中一组Device Tree的API,这些API通常被冠以of_前缀,它们的实现代码位于内核的drivers/of目录。这些常用的API包括:

int of_device_is_compatible(const struct device_node *device,const char *compat);

判断设备结点的compatible 属性是否包含compat指定的字符串。当一个驱动支持2个或多个设备的时候,这些不同.dts文件中设备的compatible 属性都会进入驱动 OF匹配表。因此驱动可以透过Bootloader传递给内核的Device Tree中的真正结点的compatible 属性以确定究竟是哪一种设备,从而根据不同的设备类型进行不同的处理。如drivers/pinctrl/pinctrl-sirf.c即兼容于"sirf,prima2-pinctrl",又兼容于"sirf,prima2-pinctrl",在驱动中就有相应分支处理:

 if (of_device_is_compatible(np, "sirf,marco-pinctrl"))
     is_marco = 1;  

struct device_node *of_find_compatible_node(struct device_node *from, const char *type, const char *compatible);

根据compatible属性,获得设备结点。遍历Device Tree中所有的设备结点,看看哪个结点的类型、compatible属性与本函数的输入参数匹配,大多数情况下,from、type为NULL。

int of_property_read_u8_array(const struct device_node *np,

                        const char *propname, u8 *out_values, size_t sz);

int of_property_read_u16_array(const struct device_node *np,

                         const char *propname, u16 *out_values, size_t sz);

int of_property_read_u32_array(const struct device_node *np,

                         const char *propname, u32 *out_values, size_t sz);

int of_property_read_u64(const struct device_node *np, const char propname, u64 *out_value);

读取设备结点np的属性名为propname,类型为8、16、32、64位整型数组的属性。对于32位处理器来讲,最常用的是of_property_read_u32_array()。如在arch/arm/mm/cache-l2x0.c中,透过如下语句读取L2 cache的"arm,data-latency"属性:

of_property_read_u32_array(np, "arm,data-latency",data, ARRAY_SIZE(data));  

在arch/arm/boot/dts/vexpress-v2p-ca9.dts中,含有"arm,data-latency"属性的L2 cache结点如下:

 L2: cache-controller@1e00a000 {
   138                 compatible = "arm,pl310-cache";
   139                 reg = <0x1e00a000 0x1000>;
   140                 interrupts = <0 43 4>;
   141                 cache-level = <2>;
   142                 arm,data-latency = <1 1 1>;
   143                 arm,tag-latency = <1 1 1>;
   144         }  

有些情况下,整形属性的长度可能为1,于是内核为了方便调用者,又在上述API的基础上封装出了更加简单的读单一整形属性的API,它们为int of_property_read_u8()、of_property_read_u16()等,实现于include/linux/of.h:

       513 static inline int of_property_read_u8(const struct device_node *np,
       514                                        const char *propname,
       515                                        u8 *out_value)
       516 {
       517         return of_property_read_u8_array(np, propname, out_value, 1);
       518 }
       519
       520 static inline int of_property_read_u16(const struct device_node *np,
       521                                        const char *propname,
       522                                        u16 *out_value)
       523 {
       524         return of_property_read_u16_array(np, propname, out_value, 1);
       525 }
       526
       527 static inline int of_property_read_u32(const struct device_node *np,
       528                                        const char *propname,
       529                                        u32 *out_value)
       530 {
       531         return of_property_read_u32_array(np, propname, out_value, 1);
       532 }  
int of_property_read_string(struct device_node *np, const char

        propname, const char **out_string);

int of_property_read_string_index(struct device_node *np, const char

       *propname, int index, const char **output);

前者读取字符串属性,后者读取字符串数组属性中的第index个字符串。如drivers/clk/clk.c中的of_clk_get_parent_name()透过of_property_read_string_index()遍历clkspec结点的所有"clock-output-names"字符串数组属性。

       1759 const char *of_clk_get_parent_name(struct device_node *np, int index)
       1760 {
       1761         struct of_phandle_args clkspec;
       1762         const char *clk_name;
       1763         int rc;
       1764
       1765         if (index < 0)
       1766                 return NULL;
       1767
       1768         rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
       1769                                         &clkspec);
       1770         if (rc)
       1771                 return NULL;
       1772
       1773         if (of_property_read_string_index(clkspec.np, "clock-output-names",
       1774                                   clkspec.args_count ? clkspec.args[0] : 0,
       1775                                           &clk_name) < 0)
       1776                 clk_name = clkspec.np->name;
       1777
       1778         of_node_put(clkspec.np);
       1779         return clk_name;
       1780 }
       1781 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);  
static inline bool of_property_read_bool(const struct device_node *np, const char *propname);

如果设备结点np含有propname属性,则返回true,否则返回false。一般用于检查空属性是否存在。

void __iomem *of_iomap(struct device_node *node, int index); 

通过设备结点直接进行设备内存区间的 ioremap(),index是内存段的索引。若设备结点的reg属性有多段,可通过index标示要ioremap的是哪一段,只有1段的情况,index为0。采用Device Tree后,大量的设备驱动通过of_iomap()进行映射,而不再通过传统的ioremap。

unsigned int irq_of_parse_and_map(struct device_node *dev, int index); 

透过Device Tree或者设备的中断号,实际上是从.dts中的interrupts属性解析出中断号。若设备使用了多个中断,index指定中断的索引号。

还有一些OF API,这里不一一列举,具体可参考include/linux/of.h头文件。

参考:http://www.loongnix.org/index.php/Arm_Linux3.x%E7%9A%84%E8%AE%BE%E5%A4%87%E6%A0%91

原文地址:https://www.cnblogs.com/lxl-lennie/p/10475256.html

时间: 2024-10-06 08:01:43

ARM设备树的相关文章

关于linux ARM device tree设备树

关于linux ARM device tree设备树 关于linux device tree .dtb文件是如何加载到内核并解析的.见下图: 关于arm device tree的phandle的处理原理,见下图: 详细情况,见下面我的ARM device tree原理视频课程:https://edu.51cto.com/course/17175.html 具体请参考我的免费的linux各种驱动开发课程如下:https://edu.51cto.com/course/17138.html 另外我的相

设备树API

设备树API通常以of_开头,实现代码位于drivers/of目录下. 参考: 1. linux设备树语法 2. ARM Linux 3.x的设备树(Device Tree)

Linux设备树语法详解

Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写.引入了设备树之后,驱动代码只负责处理驱动的逻辑,而关于设备的具体信息存放到设备树文件中,这样,如果只是硬件接口信息的变化而没有驱动逻辑的变化,驱动开发者只需要修改设备树文件信息,不需要改写驱动代码.比如在ARM Linux内,一个.dts(device tree source)文件对应一个ARM的machine,一般放置在内核的

zynq基础--&gt;LINUX 设备树

1.概念 linux设备树是用于描述硬件及部分启动指令的文件,由bootloader传递给内核, 内核分析此文件而对硬件使用不同的参数. 比如两块开发板仅仅是内存容量不一样,那么就只需要修改设备树中对内存容量的描述即可, 而不需要重新编译内核. 与设备树相关的文件有如下几种: DTS(device tree source) .dts文件,就是ASCII字符串形式的文本文件,直接由开发人员修改. 对于ARM架构而言,这些文件位于:arch/arm/boot/dts 目录下. DTSI(device

【Linux-设备树】设备树

Linux3.1之前的版本,对于一般的ARM平台的设备,板级信息一般存放在/arch/arm/mach-**目录下. 设备树对应的文件存放在/arch/arm/boot/dts/***.dts目录下 设备树引入的目的: 避免各个厂商代码的重复,加速linux内核的bsp的开发.编译一个镜像可以支持多个不同设备,只需要编译对应的设备树并打包就可以. 设备树:是一种描述板子硬件信息的数据结构(二进制文件),通过lk(bootloader)加载不同(对应的内核). 内容:dts源文件----dtc编译

我眼中的Linux设备树(四 中断)

四 中断 中断一般包括中断产生设备和中断处理设备.中断控制器负责处理中断,每一个中断都有对应的中断号及触发条件.中断产生设备可能有多个中断源,有时多个中断源对应中断控制器中的一个中断,这种情况中断产生设备的中断源称之为中断控制器中对应中断的子中断.一般情况中断产生设备数量要多于中断控制器,多个中断产生设备的中断都由一个中断控制器处理,这种多对一的关系也很像一个树形结构,所以在设备树中,中断也被描述成树,叫中断树.以下表述的时候为了明确是在说中断树,在父节点和子节点前边我们都加上“中断”二字,是为

Linux设备树语法详解【转】

本文转载自:http://www.cnblogs.com/xiaojiang1025/p/6131381.html 概念 Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离.在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写.引入了设备树之后,驱动代码只负责处理驱动的逻辑,而关于设备的具体信息存放到设备树文件中,这样,如果只是硬件接口信息的变化而没有驱动逻辑的变化,驱动开发者只需要修改设备树文件信息,不需要改写驱动代码.比如在AR

基于tiny4412的Linux内核移植 -- 设备树的展开

作者信息 作者: 彭东林 邮箱:[email protected] QQ:405728433 平台简介 开发板:tiny4412ADK + S700 + 4GB Flash 要移植的内核版本:Linux-4.4.0 (支持device tree) u-boot版本:友善之臂自带的 U-Boot 2010.12 (为支持uImage启动,做了少许改动) busybox版本:busybox 1.25 交叉编译工具链: arm-none-linux-gnueabi-gcc (gcc version 4

Linux设备树使用(二)

一.设备树与驱动的匹配1.设备树会被/scripts中的dtc可执行程序编译成二进制.dtb文件,之前设备树中的节点信息会以单链表的形式存储在这个.dtb文件中:驱动与设备树中compatible属性匹配上后, 驱动中的相应的node节点就映射在这个设备树节点上了,然后以这个node为参数调用of函数来解析这个设备树块上的信息为驱动所用.设备树中的信息是逐条进行获取的(?) 2.例如设备树中有如下定义: flash_SY7803:flashlight { compatible = "qcom,l