POJ2749 Building roads

嘟嘟嘟


最近把21天漏的给不上。


今天重温了一下2-SAT,感觉很简单。就是把所有条件都转化成如果……必然能导出……。然后就这样连边建图,这样一个强连通分量中的所有点必然都是真或者假。从而根据这个点拆点后的两个点是否在一个强连通分量里判断是否有解。


这题人很容易想到拆点:\(i\)表示\(i\)连向\(s_1\),\(i + n\)表示\(i\)连向\(s_2\)。
这道题关键在于距离这个限制。我们肯定能想到二分,但是接下来我就没想出来,因为2-SAT的图的边权是没有意义的。但实际上这个也是可以用2-SAT的思路解决的:比如\(dis(i, s_1) + dis(j, s_1) > mid\),那么就说明,如果\(i\)连了\(s_1\),\(j\)只能连\(s_2\),因此我们连边\((i, j + n)\)。按照这种思路把四种情况都写一遍就行了。


这题和板子还有一个区别就是,板子给的条件形如"如果\(i\)为真,则\(j\)为假",也就是说,每一点的真假已知。但这到题真假不定,所以都得讨论。也就是说,对于每一个讨厌和喜欢关系,都得连4条边。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e2 + 5;
const int maxe = 5e6 + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}

int n, A, B;
struct Node
{
  int x, y;
  friend In int dis(Node& A, Node& B)
  {
    return abs(A.x - B.x) + abs(A.y - B.y);
  }
}s[2], p[maxn], a[maxn << 1], b[maxn << 1];
int d[maxn << 1], DIS;

struct Edge
{
  int nxt, to;
}e[maxe];
int head[maxn << 1], ecnt = -1;
In void addEdge(int x, int y)
{
  e[++ecnt] = (Edge){head[x], y};
  head[x] = ecnt;
}

In void build(int x)
{
  for(int i = 1; i <= A; ++i)
    {
      int u = a[i].x, v = a[i].y;
      addEdge(u, v + n), addEdge(v, u + n);
      addEdge(u + n, v), addEdge(v + n, u);
    }
  for(int i = 1; i <= B; ++i)
    {
      int u = b[i].x, v = b[i].y;
      addEdge(u, v), addEdge(u + n, v + n);
      addEdge(v, u), addEdge(v + n, u + n);
    }
  for(int i = 1; i <= n; ++i)
    for(int j = 1; j <= n; ++j)
      if(i ^ j)
    {
      if(d[i] + d[j] > x)
        addEdge(i, j + n), addEdge(j, i + n);
      if(d[i + n] + d[j + n] > x)
        addEdge(i + n, j), addEdge(j + n, i);
      if(d[i] + d[j + n] + DIS > x)
        addEdge(i, j), addEdge(j + n, i + n);
      if(d[i + n] + d[j] + DIS > x)
        addEdge(i + n, j + n), addEdge(j, i);
    }
}
bool in[maxn << 1];
int dfn[maxn << 1], low[maxn << 1], cnt = 0;
int st[maxn << 1], top = 0, col[maxn << 1], ccol = 0;
In void dfs(int now)
{
  dfn[now] = low[now] = ++cnt;
  st[++top] = now; in[now] = 1;
  for(int i = head[now], v; ~i; i = e[i].nxt)
    {
      if(!dfn[v = e[i].to])
    {
      dfs(v);
      low[now] = min(low[now], low[v]);
    }
      else if(in[v]) low[now] = min(low[now], dfn[v]);
    }
  if(low[now] == dfn[now])
    {
      int x; ++ccol;
      do
    {
      x = st[top--]; in[x] = 0;
      col[x] = ccol;
    }while(x ^ now);
    }
}
In void init()
{
  ecnt = -1;
  for(int i = 1; i <= (n << 1); ++i)
    dfn[i] = low[i] = col[i] = in[i] = 0, head[i] = -1;
  cnt = top = ccol = 0;
}
In bool sat(int x)
{
  init();
  build(x);
  for(int i = 1; i <= (n << 1); ++i) if(!dfn[i]) dfs(i);
  for(int i = 1; i <= n; ++i)
    if(col[i] == col[i + n]) return 0;
  return 1;
}

int main()
{
  n = read(), A = read(), B = read();
  s[0].x = read(), s[0].y = read(), s[1].x = read(), s[1].y = read();
  for(int i = 1; i <= n; ++i) p[i].x = read(), p[i].y = read();
  for(int i = 1; i <= A; ++i) a[i].x = read(), a[i].y = read();
  for(int i = 1; i <= B; ++i) b[i].x = read(), b[i].y = read();
  DIS = dis(s[0], s[1]);
  for(int i = 1; i <= n; ++i) d[i] = dis(p[i], s[0]), d[i + n] = dis(p[i], s[1]);
  int L = 0, R = 6e6;
  while(L < R)
    {
      int mid = (L + R) >> 1;
      if(sat(mid)) R = mid;
      else L = mid + 1;
    }
  write(L == 6e6 ? -1 : L), enter;
  return 0;
}

原文地址:https://www.cnblogs.com/mrclr/p/10741117.html

时间: 2024-11-09 00:00:29

POJ2749 Building roads的相关文章

2-SAT入门 poj2749 Building roads

poj2749 Building roads http://poj.org/problem?id=2749 二分答案,以后构造布尔表达式. 相互讨厌是!((a and b)or(!a and !b) 化简得 (!a or !b)and(a or b) 相互喜欢是!(a and !b)or(!a and b) 化简得 (!a or b)and(a or !b) 然后枚举点对讨论一个点对和S1,S2相连会不会超过lim来添加限制. 一共有四种情况都差不多,比如都连到S1会超过lim,就添加!(!a

[POJ2749]Building roads(2-SAT)

Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8153   Accepted: 2772 Description Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some ro

[BZOJ1626][Usaco2007 Dec]Building Roads 修建道路

1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec  Memory Limit: 64 MB Submit: 1730  Solved: 727 [Submit][Status][Discuss] Description Farmer John最近得到了一些新的农场,他想新修一些道路使得他的所有农场可以经过原有的或是新修的道路互达(也就是说,从任一个农场都可以经过一些首尾相连道路到达剩下的所有农场).有些农场之间原本就有道路相连.

hdu 1815 Building roads

Building roads Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 822    Accepted Submission(s): 239 Problem Description Farmer John's farm has N barns, and there are some cows that live in each b

poj 3625 Building Roads

题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already conn

洛谷——P2872 [USACO07DEC]道路建设Building Roads

P2872 [USACO07DEC]道路建设Building Roads 题目描述 Farmer John had just acquired several new farms! He wants to connect the farms with roads so that he can travel from any farm to any other farm via a sequence of roads; roads already connect some of the farms

Building roads

Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 34 Accepted Submission(s): 13   Problem Description Farmer John's farm has N barns, and there are some cows that live in each barn.

HDU 1815, POJ 2749 Building roads(2-sat)

HDU 1815, POJ 2749 Building roads 题目链接HDU 题目链接POJ 题意: 有n个牛棚, 还有两个中转站S1和S2, S1和S2用一条路连接起来. 为了使得任意牛棚两个都可以有道路联通,现在要让每个牛棚都连接一条路到S1或者S2. 有a对牛棚互相有仇恨,所以不能让他们的路连接到同一个中转站.还有b对牛棚互相喜欢,所以他们的路必须连到同一个中专站. 道路的长度是两点的曼哈顿距离. 问最小的任意两牛棚间的距离中的最大值是多少? 思路:二分距离,考虑每两个牛棚之间4种连

poj 2749 Building roads (二分+拆点+2-sat)

Building roads Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6229   Accepted: 2093 Description Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some ro