题目链接:点击打开链接
题目大意: 有个人想拍n部电影,每部电影限定每周哪几天可以拍
并且必须在第ki周之前把这部电影拍完,问能否拍完n部电影
解题思路: 把每部电影当作一个顶点,源点指向这些顶点,容量为该电影需要拍多少天
然后把每一天都当作顶点,某个工作可以在这天完成就连容量为1大边
每天的顶点指向汇点,容量也为1
最后求出最大流,满流则说明可以完成这些工作
啦啦啦
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> template <class T> inline bool rd(T &ret) { char c; int sgn; if(c=getchar(),c==EOF) return 0; while(c!='-'&&(c<'0'||c>'9')) c=getchar(); sgn=(c=='-')?-1:1; ret=(c=='-')?0:(c-'0'); while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0'); ret*=sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if(x>9) pt(x/10); putchar(x%10+'0'); } using namespace std; //点标 [0,n] const int N = 20+50*7+100; const int M = 500010; const int INF = ~0u >> 2; template<class T> struct Max_Flow { int n; int Q[N], sign; int head[N], level[N], cur[N], pre[N]; int nxt[M], pnt[M], E; T cap[M]; void Init(int n) { this->n = n+1; E = 0; std::fill(head, head + this->n, -1); } //有向rw 就= 0 void add(int from, int to, T c) { pnt[E] = to; cap[E] = c; nxt[E] = head[from]; head[from] = E++; pnt[E] = from; cap[E] = 0; nxt[E] = head[to]; head[to] = E++; } bool Bfs(int s, int t) { sign = t; std::fill(level, level + n, -1); int *front = Q, *tail = Q; *tail++ = t; level[t] = 0; while(front < tail && level[s] == -1) { int u = *front++; for(int e = head[u]; e != -1; e = nxt[e]) { if(cap[e ^ 1] > 0 && level[pnt[e]] < 0) { level[pnt[e]] = level[u] + 1; *tail ++ = pnt[e]; } } } return level[s] != -1; } void Push(int t, T &flow) { T mi = INF; int p = pre[t]; for(int p = pre[t]; p != -1; p = pre[pnt[p ^ 1]]) { mi = std::min(mi, cap[p]); } for(int p = pre[t]; p != -1; p = pre[pnt[p ^ 1]]) { cap[p] -= mi; if(!cap[p]) { sign = pnt[p ^ 1]; } cap[p ^ 1] += mi; } flow += mi; } void Dfs(int u, int t, T &flow) { if(u == t) { Push(t, flow); return ; } for(int &e = cur[u]; e != -1; e = nxt[e]) { if(cap[e] > 0 && level[u] - 1 == level[pnt[e]]) { pre[pnt[e]] = e; Dfs(pnt[e], t, flow); if(level[sign] > level[u]) { return ; } sign = t; } } } T Dinic(int s, int t) { pre[s] = -1; T flow = 0; while(Bfs(s, t)) { std::copy(head, head + n, cur); Dfs(s, t, flow); } return flow; } }; Max_Flow <int>F; int n; void work(){ rd(n); int from = 0, to = n + 50*7 +1; F.Init(to); int all = 0; for(int i = 1, d, w; i <= n; i++) { int a[8]; for(int j = 1; j <= 7; j++)rd(a[j]); rd(d); rd(w); all += d; F.add(from, i, d); for(int week = 0; week < w; week++) for(int j = 1; j <= 7; j++) if(a[j]) F.add(i, n+week*7+j, 1); } for(int i = 0; i < 50; i++) for(int j = 1; j <= 7; j++) F.add(n+i*7+j, to, 1); all == F.Dinic(from, to)?puts("Yes"):puts("No"); } int main(){ int T; rd(T); while(T--) work(); return 0; }
POJ 1698 Alice's Chance 网络流(水
时间: 2024-10-12 07:36:42