Colossal Fibonacci Numbers! UVA - 11582

题解:所有计算都是对n取模的,不妨设F(i) = f(i) mod n。不难发现,当二元组(F(i),F(i+1))出现重复时,整个序列就开始重复。因为余数最多

n种,所以最多n2 项就会出现重复。设周期为M,则只需要计算出F[0]~F[n2],然后算出F[ab]等于其中哪一项就可以了。

------------------------------------------------------------------摘自《算法竞赛入门经典》

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<iostream>
 4 #include<algorithm>
 5 using namespace std;
 6 typedef unsigned long long ull;
 7
 8 const int maxn=1005;
 9
10 ull a,b,n;
11 int temp;
12 int F[maxn*maxn];
13
14 ull mod_pow(ull x,ull y,ull mod){
15     ull ans=1;
16     while(y>0){
17         if(y&1) ans=ans*x%mod;
18         x=x*x%mod;
19         y>>=1;
20     }
21     return ans;
22 }
23
24 void inite(){
25     F[0]=0,F[1]=1%n;
26     temp=1;
27     for(int i=2;i<=(n*n+100);i++){
28         F[i]=(F[i-1]+F[i-2])%n;
29         if(F[i]==1&&F[i-1]==0){ temp=i-1; break; }
30     }
31 }
32
33 void solve(){
34     ull ans=mod_pow(a%temp,b,(ull)temp);                  //a一定要先模一遍,否则会溢出
35     cout<<F[ans]<<endl;
36 }
37
38 int main()
39 {   int kase;
40     cin>>kase;
41     while(kase--){
42         cin>>a>>b>>n;
43         inite();
44         solve();
45     }
46     return 0;
47 } 
时间: 2024-11-15 23:41:06

Colossal Fibonacci Numbers! UVA - 11582的相关文章

UVA 11582 Colossal Fibonacci Numbers!(打表+快速幂)

Colossal Fibonacci Numbers! The i'th Fibonacci number f (i) is recursively defined in the following way: f (0) = 0 and f (1) = 1 f (i+2) = f (i+1) + f (i)  for every i ≥ 0 Your task is to compute some values of this sequence. Input begins with an int

UVA 11582 Colossal Fibonacci Numbers! 找循环节

注意n=1的情况 #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include <cstdlib> #include <list> #inc

UVA 11582 Colossal Fibonacci Numbers! 数学

n比较小,最多n*n就回出现循环节.... Colossal Fibonacci Numbers! Time Limit: 1000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Description Problem F: Colossal Fibonacci Numbers! The i'th Fibonacci number f (i) is recursively defined in the

UVa 11582 Colossal Fibonacci Numbers! 【大数幂取模】

题目链接:Uva 11582 [vjudge] 题意 输入两个非负整数a.b和正整数n(0<=a,b<=2^64,1<=n<=1000),让你计算f(a^b)对n取模的值,当中f(0) = 0,f(1) =  1.且对随意非负整数i.f(i+2)= f(i+1)+f(i). 分析 全部的计算都是对n取模.设F(i) =f(i)mod n, 非常easy发现,F(x)是具有周期性的,由于对N取模的值最多也就N个,当二元组(F(i-1),F(i))反复的时候.整个序列也就反复了.周期i

UVA 11582 - Colossal Fibonacci Numbers!(数论)(分治法幂取模)

巨大的斐波那契数! 题目大意:斐波那契数列f[N],给你a,b,n,求f[a^b]%n. 思路:数论题.f[a^b]%n是有周期的,我们求出来这个周期后就可以将简化成f[(a%周期)^b]%周期运用分治法幂取模. 注意用unsigned long long(貌似是 long long的二倍),不然会溢出,又学了一招... 不知道哪的bug,一直改不对,一直,后来捡来别人的和自己一样的代码一改就对了,,, #include<iostream>//UVA #include<cstdio>

UVa 11582 - Colossal Fibonacci Numbers!(数论)

链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2629 题意: 输入两个非负整数a.b和正整数n(0≤a,b<2^64,1≤n≤1000),你的任务是计算f(a^b)除以n的余数.其中f(0)=0,f(1)=1,且对于所有非负整数i,f(i+2)=f(i+1)+f(i). 分析: 所有计算都是对n取模的,设F(i)=f(i)

UVA - 11582 Colossal Fibonacci Numbers! (巨大的斐波那契数!)

题意:输入两个非负整数a.b和正整数n(0<=a,b<264,1<=n<=1000),你的任务是计算f(ab)除以n的余数,f(0) = 0, f(1) = 1,且对于所有非负整数i,f(i + 2) = f(i + 1) + f(i). 分析: 1.对于某个n取余的斐波那契序列总是有周期的,求出每个取值的n下的斐波那契序列和周期. 2.ab对T[n]取余,即可确定对n取余的斐波那契序列中f(ab)的位置. #pragma comment(linker, "/STACK:

UVA 11582 Colossal Fibonacci Numbers! 大斐波那契数

大致题意:输入两个非负整数a,b和正整数n.计算f(a^b)%n.其中f[0]=f[1]=1, f[i+2]=f[i+1]+f[i]. 即计算大斐波那契数再取模. 一开始看到大斐波那契数,就想到了矩阵快速幂,输出等了几秒钟才输出完,肯定会超时.因为所有计算都是要取模的,设F[i]=f[i] mod n.F[0]=F[1]=1.只要出现F[i]=F[i+1]=1,那么整个序列就会重复.例如n=3,则序列为1,1,2,0,2,2,1,0,1,1……第九项和第十项都等于1,所以之后的序列都会重复. 至

UVA - 11582 Colossal Fibonacci Numbers!循环节

找Fn =( Fn-1 + Fn-2 ) mod n 的循环节 暴力找即可 1 #include <cstdio> 2 #include <iostream> 3 #include <cstring> 4 typedef unsigned long long ll; 5 using namespace std; 6 const int MAXN = 1023; 7 ll f[MAXN][MAXN*10]; 8 int circle[MAXN]; 9 10 void in