[hiho 16]RMQ-ST算法

问题描述

问题就是询问区间内的最小值。

数据量n, 查询量q。

朴素的算法复杂度O(nq)。

为减少冗余计算,预先计算出每个位置起 2^k 长度范围内的最小值。

data[i][j]表示从 i 起的 2^k 个元素的最小值。

递推式 data[i][j] = min{data[i][j – 1], data[i + 1 << (j - 1)][j - 1]}。

针对询问 [L, R],计算出最大的 k 使得 2^k < R – L + 1,区间最小值就是 min{data[L][k], data[R – 1 << k + 1][k]}。

之所以取 2 为底,是因为计算机数据是二进制储存的,位运算比较方便省时,同时递推和结果表达也较为简单。

ST算法的复杂度是 O(nlogn + q)。

#include <stdio.h>

#define min(a, b) ((a) < (b) ? (a) : (b))
#define MAX 1000005
int data[MAX][25];

int main(){
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; i++) {
        scanf("%d", &data[i][0]);
    }
    int max_i = 0;
    int t = n;
    while (t) {
        max_i++;
        t >>= 1;
    }
    for (int i = 1; i < max_i; i++) {
        int len = 1 << i;
        for (int j = 1; j <= n - len + 1; j++) {
            data[j][i] = min(data[j][i - 1], data[j + len / 2][i - 1]);
        }
    }
    scanf("%d", &n);
    int a, b;
    while (n--) {
        scanf("%d%d", &a, &b);
        int len = b - a + 1;
        int i = 0;
        while(len) {
            i++;
            len >>= 1;
        }
        i--;
        len = 1 << i;
        printf("%d\n", min(data[a][i], data[b - len + 1][i]));
    }

    return 0;
}
时间: 2024-10-25 14:55:12

[hiho 16]RMQ-ST算法的相关文章

[POJ3264]Balanced Lineup(RMQ, ST算法)

题目链接:http://poj.org/problem?id=3264 典型RMQ,这道题被我鞭尸了三遍也是醉了…这回用新学的st算法. st算法本身是一个区间dp,利用的性质就是相邻两个区间的最值的最值一定是这两个区间合并后的最值,这条性质决定了这个dp子问题的重叠.可以利用这个性质预处理出这张表,只不过步长是2的幂次. 查询的时候也是如此,但是未必会精准地选中两个区间,不要紧,因为两个区间重叠的部分也会被自动算在求最值的内部.这个时候如果算的是区间和的话,要减去这一部分.(区间和的话直接用前

CF359D Pair of Numbers [RMQ+ST算法]

题意: 给一串数,找出最长的区间使得这个区间里面有个数能被其他所有数整除(包括它自己),求满足这个条件的最长区间的个数及长度,以及这些区间的左端的位置 分析: 这个区间的要求其实就是GCD(ALL)=MIN(ALL),能被其他数整除,这个数肯定是最小的,然后又能被其他数整除(包括自己)这个数就是GCD了 可以二分枚举区间长度,然后验证答案的可靠性 对当前长度的所有区间,套用RMQ,验证是否存在一个区间的GCD=MIN 如果有这样的一个区间,那么说明当前长度可以,加大枚举的区间长度,否则减小 #i

自己写的 RMQ ST算法模板类

1 #include<iostream> 2 using namespace std; 3 #include<cstdio> 4 #include<cstring> 5 /* 6 说明: 7 RMQ<T> rr;定义一个查询区间最小值的数据类型为T 的类 8 SetMaxn(T maxn);设置初始化数组的最大值 9 Creat(T a[],int maxn) 设置查询的数组,和数组长度,从0开始 10 Getx(int la,int lb) 查询数组中下标

POJ3264 Balanced Lineup 线段树 RMQ ST算法应用

Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 36813 Accepted: 17237 Case Time Limit: 2000MS Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John de

POJ 3368 Frequent values RMQ ST算法/线段树

                                                     Frequent values Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15229   Accepted: 5550 Description You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In

RMQ st算法 区间最值模板

#include<bits/stdc++.h> const int N=1e6+5; const int Logn=20; int f[N][Logn],a[N],lg[N],n,m; int main(){ cin>>n>>m; rep(i,1,n) cin>>a[i]; lg[0]=-1; rep(i,1,n) fa[i][0]=a[i],lg[i]=lg[i>>1]+1; rep(j,1,Logn) for(int i=1;i+(1<

RMQ问题——ST算法

什么是RMQ.ST:RMQ(Range Minimum/Maximum Query)问题,即求区间的最值.可以写一个线段树来实现,但是每次查询的时间复杂度为O(log n),若查询次数过多则可能超时.ST算法是一种离线算法,经过O(nlogn)的预处理后,可以在O(1)的时间复杂度内进行查询,缺点是无法对数据做出修改. 算法实现: 初始化:用dp实现初始化.a[]为原始数据数组f,[i][j]表示从i向后的2j个数字中的最值.显然f[i][0]=a[i]; 我们将f[i][j]分为两段,一段为a

RMQ问题之ST算法

RMQ问题之ST算法 RMQ(Range Minimum/Maximum Query)问题,即区间最值问题.给你n个数,a1 , a2 , a3 , ... ,an,求出区间 [ l , r ]的最大值. 举例:a={ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 },求出区间[4 ,8]中的最值.(答案:8 ) 这个问题最朴素的想法是用一个循环每次比较大小,但是,当数据范围较大时,这个算法十分低效.这时我们往往使用 ST 算法解决这个问题.虽然线段树和树状数组都能解决,但

【RMQ】【ST算法】【模板】士兵杀敌(三)

描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比较,计算出两个人的杀敌数差值,用这种方法一方面能鼓舞杀敌数高的人,另一方面也算是批评杀敌数低的人,起到了很好的效果. 所以,南将军经常问军师小工第i号士兵到第j号士兵中,杀敌数最高的人与杀敌数最低的人之间军功差值是多少. 现在,请你写一个程序,帮小工回答南将军每次的询问吧. 注意,南将军可能询问很多次. 输入 只有一组测试数据 第一行是两个整数N,Q,其中N表示士兵的总数.Q表示南将军

RMQ算法 (ST算法)

 概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值.对于一次查询,可以暴力地O(n),但是当查询次数很多的时候,这样的暴力就无法进行了.这时我们可以通过RMQ算法来解决这个问题. RMQ(ST):(关于学习RMQ的博客:框架即讲解比较详细 , 具体代码比较好) ST(Sparse Table)算法是一个非常有名的在线处理RMQ