最小二乘法小结

 最小二乘法是用来做函数拟合或者求函数极值的方法。在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结。

1.最小二乘法的原理与要解决的问题 

    最小二乘法是由勒让德在19世纪发现的,原理的一般形式很简单,当然发现的过程是非常艰难的。形式如下式:

      目标函数 = Σ(观测值-理论值)2

    观测值就是我们的多组样本,理论值就是我们的假设拟合函数。目标函数也就是在机器学习中常说的损失函数,我们的目标是得到使目标函数最小化时候的拟合函数的模型。举一个最简单的线性回归的简单例子,比如我们有m个只有一个特征的样本:

    (x(1),y(1)),(x(2),y(2),...(x(m),y(m))(x(1),y(1)),(x(2),y(2),...(x(m),y(m))

    样本采用下面的拟合函数:

    hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x

    这样我们的样本有一个特征x,对应的拟合函数有两个参数θ0和θ1θ0和θ1需要求出。

    我们的目标函数为:

    J(θ0,θ1)=∑i=1m(y(i)?hθ(x(i))2=∑i=1m(y(i)?θ0?θ1x(i))2J(θ0,θ1)=∑i=1m(y(i)?hθ(x(i))2=∑i=1m(y(i)?θ0?θ1x(i))2 

    用最小二乘法做什么呢,使J(θ0,θ1)J(θ0,θ1)最小,求出使J(θ0,θ1)J(θ0,θ1)最小时的θ0和θ1θ0和θ1,这样拟合函数就得出了。

    那么,最小二乘法怎么才能使J(θ0,θ1)J(θ0,θ1)最小呢?

2.最小二乘法的代数法解法

    上面提到要使J(θ0,θ1)J(θ0,θ1)最小,方法就是对θ0和θ1θ0和θ1分别来求偏导数,令偏导数为0,得到一个关于θ0和θ1θ0和θ1的二元方程组。求解这个二元方程组,就可以得到θ0和θ1θ0和θ1的值。下面我们具体看看过程。

    J(θ0,θ1)对θ0J(θ0,θ1)对θ0求导,得到如下方程:

    ∑i=1m(y(i)?θ0?θ1x(i))=0∑i=1m(y(i)?θ0?θ1x(i))=0                                  ①

    J(θ0,θ1)对θ1J(θ0,θ1)对θ1求导,得到如下方程:

    ∑i=1m(y(i)?θ0?θ1x(i))x(i)=0∑i=1m(y(i)?θ0?θ1x(i))x(i)=0         ②

    ①和②组成一个二元一次方程组,容易求出θ0和θ1θ0和θ1的值:

    

    θ0=∑i=1m(x(i))2∑i=1my(i)?∑i=1mx(i)∑i=1mx(i)y(i)/n∑i=1m(x(i))2?(∑i=1mx(i))2θ0=∑i=1m(x(i))2∑i=1my(i)?∑i=1mx(i)∑i=1mx(i)y(i)/n∑i=1m(x(i))2?(∑i=1mx(i))2

    θ1=n∑i=1mx(i)y(i)?∑i=1mx(i)∑i=1my(i)/n∑i=1m(x(i))2?(∑i=1mx(i))2θ1=n∑i=1mx(i)y(i)?∑i=1mx(i)∑i=1my(i)/n∑i=1m(x(i))2?(∑i=1mx(i))2

    这个方法很容易推广到多个样本特征的线性拟合。

    拟合函数表示为 hθ(x1,x2,...xn)=θ0+θ1x1+...+θnxnhθ(x1,x2,...xn)=θ0+θ1x1+...+θnxn, 其中θiθi (i = 0,1,2... n)为模型参数,xixi (i = 0,1,2... n)为每个样本的n个特征值。这个表示可以简化,我们增加一个特征x0=1x0=1,这样拟合函数表示为:

    hθ(x0,x1,...xn)=∑i=0nθixihθ(x0,x1,...xn)=∑i=0nθixi。

    损失函数表示为:

J(θ0,θ1...,θn)=∑j=1m(hθ(x(j)0),x(j)1,...x(j)n))?y(j)))2=∑j=1m(∑i=0nθix(j)i?y(j))2J(θ0,θ1...,θn)=∑j=1m(hθ(x0(j)),x1(j),...xn(j)))?y(j)))2=∑j=1m(∑i=0nθixi(j)?y(j))2

    利用损失函数分别对θiθi(i=0,1,...n)求导,并令导数为0可得:

    ∑j=0m(∑i=0nθix(j)i?yj)xji∑j=0m(∑i=0nθixi(j)?yj)xij = 0   (i=0,1,...n)

    这样我们得到一个N+1元一次方程组,这个方程组有N+1个方程,求解这个方程,就可以得到所有的N+1个未知的θθ。

    

    这个方法很容易推广到多个样本特征的非线性拟合。原理和上面的一样,都是用损失函数对各个参数求导取0,然后求解方程组得到参数值。这里就不累述了。

3.最小二乘法的矩阵法解法

    矩阵法比代数法要简洁,且矩阵运算可以取代循环,所以现在很多书和机器学习库都是用的矩阵法来做最小二乘法。

    这里用上面的多元线性回归例子来描述矩阵法解法。

    

    假设函数hθ(x1,x2,...xn)=θ0+θ1x1+...+θnxnhθ(x1,x2,...xn)=θ0+θ1x1+...+θnxn的矩阵表达方式为:

     hθ(x)=Xθhθ(x)=Xθ

    其中, 假设函数hθ(X)hθ(X)为mx1的向量,θθ为nx1的向量,里面有n个代数法的模型参数。XX为mxn维的矩阵。m代表样本的个数,n代表样本的特征数。

    损失函数定义为J(θ)=12(Xθ?Y)T(Xθ?Y)J(θ)=12(Xθ?Y)T(Xθ?Y)

    其中YY是样本的输出向量,维度为mx1. 1212在这主要是为了求导后系数为1,方便计算。

    根据最小二乘法的原理,我们要对这个损失函数对θθ向量求导取0。结果如下式:

    ??θJ(θ)=XT(Xθ?Y)=0??θJ(θ)=XT(Xθ?Y)=0

    这里面用到了矩阵求导链式法则,和两个矩阵求导的公式。

      公式1:??X(XXT)=2X??X(XXT)=2X

      公式2:??θ(Xθ)=XT??θ(Xθ)=XT

    对上述求导等式整理后可得:

    XTXθ=XTYXTXθ=XTY

    两边同时左乘(XTX)?1(XTX)?1可得:

    θ=(XTX)?1XTYθ=(XTX)?1XTY

    这样我们就一下子求出了θθ向量表达式的公式,免去了代数法一个个去求导的麻烦。只要给了数据,我们就可以用θ=(XTX)?1XTYθ=(XTX)?1XTY算出θθ。

4.最小二乘法的局限性和适用场景  

    从上面可以看出,最小二乘法适用简洁高效,比梯度下降这样的迭代法似乎方便很多。但是这里我们就聊聊最小二乘法的局限性。

    首先,最小二乘法需要计算XTXXTX的逆矩阵,有可能它的逆矩阵不存在,这样就没有办法直接用最小二乘法了,此时梯度下降法仍然可以使用。当然,我们可以通过对样本数据进行整理,去掉冗余特征。让XTXXTX的行列式不为0,然后继续使用最小二乘法。

    第二,当样本特征n非常的大的时候,计算XTXXTX的逆矩阵是一个非常耗时的工作(nxn的矩阵求逆),甚至不可行。此时以梯度下降为代表的迭代法仍然可以使用。那这个n到底多大就不适合最小二乘法呢?如果你没有很多的分布式大数据计算资源,建议超过10000个特征就用迭代法吧。或者通过主成分分析降低特征的维度后再用最小二乘法。

    第三,如果拟合函数不是线性的,这时无法使用最小二乘法,需要通过一些技巧转化为线性才能使用,此时梯度下降仍然可以用。

    第四,讲一些特殊情况。当样本量m很少,小于特征数n的时候,这时拟合方程是欠定的,常用的优化方法都无法去拟合数据。当样本量m等于特征说n的时候,用方程组求解就可以了。当m大于n时,拟合方程是超定的,也就是我们常用与最小二乘法的场景了。

时间: 2024-08-03 06:56:29

最小二乘法小结的相关文章

最小二乘法 及python 实现

参考   最小二乘法小结     机器学习:Python 中如何使用最小二乘法 什么是" 最小二乘法" 呢 定义:最小二乘法(又称最小平方法)是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配. 作用:利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小. 原则:以" 残差平方和最小" 确定直线位置 (在数理统计中,残差是指实际观察值与估计值之间的差) 数学公式: 基本思路:对于一元线性回归模型, 假设从总体中

线性回归之最小二乘法

线性回归之最小二乘法 1.最小二乘法的原理 最小二乘法的主要思想是通过确定未知参数\(\theta\)(通常是一个参数矩阵),来使得真实值和预测值的误差(也称残差)平方和最小,其计算公式为\(E=\sum_{i=0}^ne_i^2=\sum_{i=1}^n(y_i-\hat{y_i})\),其中\(y_i\)是真实值,\(\hat{y_i}\)是对应的预测值.如下图所示(来源于维基百科,Krishnavedala的作品),就是最小二乘法的一个示例,其中红色为数据点,蓝色为最小二乘法求得的最佳解,

线性回归原理小结

线性回归可以说是机器学习中最基本的问题类型了,这里就对线性回归的原理和算法做一个小结. 1. 线性回归的模型函数和损失函数 线性回归遇到的问题一般是这样的.我们有m个样本,每个样本对应于n维特征和一个结果输出,如下: (x(0)1,x(0)2,...x(0)n,y0),(x(1)1,x(1)2,...x(1)n,y1),...(x(m)1,x(m)2,...x(m)n,yn)(x1(0),x2(0),...xn(0),y0),(x1(1),x2(1),...xn(1),y1),...(x1(m)

最小二乘法+列主元高斯消元法

声明: 现在发现每写一篇随笔,就要在前面添加些牢骚话,各位看客如果嫌烦,直接绕道吧. 近期重新拾起C语言,因为工作的需要. 图像这个行当,matlab可以作为测试,但是真正应用的话还得转成C,所以这就是我这段时间苦逼的开始. 因为需要用到多项式变换,其中的系数求解又牵涉到线性方程组和最小二乘法的求解,所以在此,单开小灶来讲解最小二乘法和列主元高斯消元法. 一.最小二乘法 有关最小二乘法的详细介绍可以参考维基百科: 最小二乘法 相信有点数学功底的人都能看懂,这里不加详解. 在此贴上C函数代码 1

Lasso回归算法: 坐标轴下降法与最小角回归法小结

前面的文章对线性回归做了一个小结,文章在这: 线性回归原理小结.里面对线程回归的正则化也做了一个初步的介绍.提到了线程回归的L2正则化-Ridge回归,以及线程回归的L1正则化-Lasso回归.但是对于Lasso回归的解法没有提及,本文是对该文的补充和扩展.以下都用矩阵法表示,如果对于矩阵分析不熟悉,推荐学习张贤达的<矩阵分析与应用>. 1. 回顾线性回归 首先我们简要回归下线性回归的一般形式: hθ(X)=Xθhθ(X)=Xθ 需要极小化的损失函数是: J(θ)=12(Xθ?Y)T(Xθ?Y

《位置计算:无线网络定位》学习小结

第一章:无线定位概述 单跳定位:WiFi,GPS,NBIOT等单跳网络结构的定位 多跳定位:传感网.物联网等无线自组织网络的网络定位(多跳定位) 无论何种定位技术,都离不开以下3个主要环节: (1)物理测量. 对物理世界的测量手段包括WiFi,GNSS,BlueTooth,Qcell,NBIoT,UWB,红外,光波,声波,超声波.测量结果的表示包括:距离.时间.方向.区域.连接关系和信号指纹.只要信号具有位置区分性,都可以用来定位. (2)位置计算. 测量结果不同,定位的计算方法也不同.测距方法

【ML-2】最小二乘法(least squares)介绍

目录 最小二乘法的原理与要解决的问题 最小二乘法的代数法解法 最小二乘法的矩阵法解法 最小二乘法的局限性和适用场景 常见问题 ? ? 最小二乘法是用来做函数拟合或者求函数极值的方法.在机器学习,尤其是回归模型中,经常可以看到最小二乘法的身影,这里就对我对最小二乘法的认知做一个小结. 一.最小二乘法的原理与要解决的问题 最小二乘法是由勒让德在19世纪发现的(也有争议为高斯发明),形式如下式: 观测值就是我们的多组样本,理论值就是我们的假设拟合函数.目标函数也就是在机器学习中常说的损失函数,我们的目

使用Apache POI导出Excel小结--导出XLS格式文档

使用Apache POI导出Excel小结 关于使用Apache POI导出Excel我大概会分三篇文章去写 使用Apache POI导出Excel小结--导出XLS格式文档 使用Apache POI导出Excel小结--导出XLSX格式文档 使用Apache POI导出Excel--大数量导出 导出XLS格式文档 做企业应用项目难免会有数据导出到Excel的需求,最近在使用其,并对导出Excel封装成工具类开放出来供大家参考.关于Apache POI Excel基本的概念与操作我在这里就不啰嗦

【转载】小结一下linux 2.6内核的四种IO调度算法

在LINUX 2.6中,有四种关于IO的调度算法,下面综合小结一下: 1) NOOP NOOP算法的全写为No Operation.该算法实现了最最简单的FIFO队列,所有IO请求大致按照先来后到的顺序进行操作.之所以说“大致”,原因是NOOP在FIFO的基础上还做了相邻IO请求的合并,并不是完完全全按照先进先出的规则满足IO请求.NOOP假定I/O请求由驱动程序或者设备做了优化或者重排了顺序(就像一个智能控制器完成的工作那样).在有些SAN环境下,这个选择可能是最好选择.Noop 对于 IO