Linux基础-----内存管理

free -m 查看内存大小

Mem:物理内存统计

total 物理内存大小

used  以使用内存(包含buffers;bached)

free  空闲内存

shared 共享内存

buffers 缓冲(用于写操作)

cached  缓存(用于读操作)

-+ buffers/cached

used (不包含buffers和cached;实际内存使用量)

free  (包含buffers和cached;实际空闲内存)

根据以上分析,可以得出一下结论:

1.  实际可用内存大小:

Free= Free(Mem)+buffers(Mem)+Cached(Mem);

2.  已经分配的内存大小:

Used(Mem) = Used -(buffers(Mem) + Cached(Mem)

Swap

total 交换分区大小

Used  以使用的交换分区

Free  空闲的交换分区

Cache

Cache:高速缓存,是位于CPU与主内存间的一种容量较小但速度很高的存储器。

由于CPU的速度远高于主内存,CPU直接从内存中存取数据要等待一定时间周期,Cache中保存着CPU刚用过或循环使用的一部分数据,当CPU再次使用该部分数据时可从Cache中直接调用,这样就减少了CPU的等待时间,提高了系统的效率。

Cache又分为一级Cache(L1 Cache)和二级Cache(L2 Cache),L1 Cache集成在CPU内部,L2 Cache早期一般是焊在主板上,现在也都集成在CPU内部,常见的容量有256KB或512KB L2 Cache。

Buffer

Buffer:缓冲区,一个用于存储速度不同步的设备或优先级不同的设备之间传输数据的区域。通过缓冲区,可以使进程之间的相互等待变少,从而使从速度慢的设备读入数据时,速度快的设备的操作进程不发生间断。

二.Linux的交换分区 swap

在物理内存不够用时,将硬盘的某块空间模拟成内存的存储格式

有新的进程在使用内存时,将物理内存中某些数据暂存至交换分区

该数据如果被使用的时候,再将该数据重新交换至物理内存中

Swap配置对性能的影响

Swap过大浪费磁盘空间,而Swap空间太少,则系统会发生错误。 物理内存占用过多,系统运行缓慢,但仍能运行;如果Swap空间用光了,那么系统就会发生错误。如:Web服务器能根据不同的请求数量衍生出多个服务进程(或线程),如果Swap空间用完,则服务进程无法启动,通常会出现“application is of memory",严重时进程会锁死。

如Web服务器或数据服务器对性能要求较高,Swap分区不必过大,2G左右足够使用,尽量让Web服务使用物理内存高效处理

如需大量的计算工作的服务器对稳定性要求教过,Swap分区可以较大,如内存的2到4倍

Linux基础-----内存管理,布布扣,bubuko.com

时间: 2024-10-12 11:06:32

Linux基础-----内存管理的相关文章

Linux基础--进程管理相关命令介绍(2)

本文主要介绍了Linux中进程管理的相关命令,涉及到的主要命令有top,vmstat等. (1)top ①功能:用来查看CPU,内存以及进程的状态. ②用例: ③相关注释: load average表示负载,三个数值分别表示第1分钟,第5分钟,第10分钟 Cpu中us表示用户空间程序占用百分比,sy表示内核模式占用百分比,ni表示调整NICE值所占用的    CPU百分比,id表示CPU的空闲比例,wa表示等待磁盘IO完成所占用的时间比例,hi表示硬件中断占     据的百分比,si表示软中断所

Linux基础-----磁盘管理

文件系统 Windows NTFS FAT32 Linux VFS:虚拟文件系统:将底层文件系统的不同,通过统一的接口,输出给上层应用 ext2 ext3 ext4 xfs 文件系统:对分区文件就行组织管理,并建立索引表,文件系统有内核提供 格式化:创建文件系统 低级格式化:创建磁道.扇区 高级格式化:创建文件系统 分区是按柱面来划分 磁道:数据存储在磁道上 扇区:将磁道划分成扇状用于管理 柱面:多个盘片,相同位置的扇区,形成柱面 0磁道的0扇区:(不属于任何分区)MBR 512字节   主引导

Linux基础--进程管理相关命令介绍(1)

本文主要介绍了Linux中进程管理的相关命令,涉及到的主要命令有pstree,ps. (1)pstree ①功能:用来查看进程树 ②用例: (2)ps ①功能:用来显示系统当前进程状态的命令 ②用例: ③相关用法: ps a:显示所有跟终端相关的进程 ps x:显示所有跟终端无关的进程 相关注释: STAT各代码含义: S:可中断的睡眠态 D:不可中断的睡眠态 R:运行或可运行 T:停止 Z:僵死 s:session leader l:多线程进程 +:前台进程 N:低优先级进程 <:高优先级进程

玩转Linux之内存管理-free

玩转Linux之内存管理-free free命令可以显示Linux系统中空闲的.已用的物理内存及swap内存,及被内核使用的buffer.在Linux系统监控的工具中,free命令是最经常使用的命令之一.下面给出一个free命令的栗子: 1 [[email protected] ~]# free 2 total used free shared buffers cached 3 Mem: 8062392 2092832 5969560 0 187132 1498832 4 -/+ buffers

Linux内核——内存管理

内存管理 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU,管理内存并把虚拟地址转换为物理地址)通常以页为单位进行处理.MMU以页大小为单位来管理系统中的页表.从虚拟内存的角度看,页就是最小单位. 32位系统:页大小4KB 64位系统:页大小8KB 在支持4KB页大小并有1GB物理内存的机器上,物理内存会被划分为262144个页.内核用 struct page 结构表示系统中的每个物理页. struct page { page_flags_t flags;   /* 表示页的状态,每

【OC语法快览】四、基础内存管理

Basic Memory Management                                                           基础内存管理 If you're writing an application for Mac OS X, you have the option to enable garbage collection. In general, this means that you don't have to think about memory

从一道面试题(死循环里分配内存)阐述Linux的内存管理

题目: int cnt = 0; while(1) { ++cnt; ptr = (char *)malloc(1024*1024*128); if(ptr == NULL) { printf("%s\n", "is null"); break; } } printf("%d\n", cnt); 这个程序会有怎样的输出呢? 结果在Linux32位机是 is null 3057 为嘛是3057?? 因为用户态虚拟内存地址空间是3G. 3057M 大

linux内核 内存管理

以下内容汇总自网络. 在早期的计算机中,程序是直接运行在物理内存上的.换句话说,就是程序在运行的过程中访问的都是物理地址. 如果这个系统只运行一个程序,那么只要这个程序所需的内存不要超过该机器的物理内存就不会出现问题,我们也就不需要考虑内存管理这个麻烦事了,反正就你一个程序,就这么点内存,吃不吃得饱那是你的事情了. 然而现在的系统都是支持多任务,多进程的,这样CPU以及其他硬件的利用率会更高,这个时候我们就要考虑到将系统内有限的物理内存如何及时有效的分配给多个程序了,这个事情本身我们就称之为内存

OC基础 内存管理

OC基础  内存管理 我们所了解的c语言内存管理,如下: (1)c语言的内存分配:char *p = (char*)malloc(100*sizeof(char)); (2)c语言的内存释放:free(p); c语言内存管理存在的缺陷: (1)不释放就会造成内存泄露. (2)多次释放就会造成崩溃. (3)大型项目中多人对一块内存进行操作时,不能释放内存,因为不知道别人是否还在使用. oc语言的内存管理 1.内存管理 (1)引用计数. (2)内存管理的黄金法则:谁创建谁释放. 让我们来看一下测试例