Spark RDD整理

参考资料:

Spark和RDD模型研究:http://itindex.net/detail/51871-spark-rdd-模型

理解Spark的核心RDD:http://www.infoq.com/cn/articles/spark-core-rdd/

Spark RDD详解:http://f.dataguru.cn/thread-475874-1-1.html

http://developer.51cto.com/art/201309/410276_1.htm

时间: 2024-10-26 08:07:13

Spark RDD整理的相关文章

[bigdata] Spark RDD整理

1. RDD是什么RDD:Spark的核心概念是RDD (resilient distributed dataset),指的是一个只读的,可分区的弹性分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间可重复使用. 2. 为什么会产生RDD? (1)传统的MapReduce虽然具有自动容错.平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算式中要进行大量的磁盘IO操作.RDD正是解决这一缺点的抽象方法. (2)RDD是一种有容错机制的特殊集合,可以分

Spark笔记整理(五):Spark RDD持久化、广播变量和累加器

[TOC] Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升1

Spark RDD aggregateByKey

aggregateByKey 这个RDD有点繁琐,整理一下使用示例,供参考 直接上代码 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkContext, SparkConf} /** * Created by Edward on 2016/10/27. */ object AggregateByKey { def main(args: Array[String]) { val sparkConf: SparkConf =

Spark RDD算子实战

[TOC] Spark算子概述 RDD:弹性分布式数据集,是一种特殊集合.支持多种来源.有容错机制.可以被缓存.支持并行操作,一个RDD代表多个分区里的数据集. RDD有两种操作算子: Transformation(转换):Transformation属于延迟计算,当一个RDD转换成另一个RDD时并没有立即进行转换,仅仅是记住了数据集的逻辑操作 Action(执行):触发Spark作业的运行,真正触发转换算子的计算 需要说明的是,下面写的scala代码,其实都是可以简写的,但是为了方便理解,我都

Spark RDD、DataFrame和DataSet的区别

版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类名点的方式来操作数据 缺点: 序列化和反序列化的性能开销 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化. GC的性能开销 频繁的创建和销毁对象, 势必会增加GC import org.apache.spark.sql.SQLContext import org.apache

Spark RDD解密

1.  基于数据集的处理: 从物理存储上加载数据,然后操作数据,然后写入数据到物理设备; 基于数据集的操作不适应的场景: 不适合于大量的迭代: 不适合交互式查询:每次查询都需要对磁盘进行交互. 基于数据流的方式不能够复用曾经的结果或者中间的结果; 2. RDD弹性数据集 特点: A)自动的进行内存和磁盘数据的存储切换: B) 基于lineage的高效容错: C) Task如果失败会自动进行重试 D) Stage如果失败会自动进行重试,而且只会计算失败的分片; E) Checkpoint和pers

Spark3000门徒第14课spark RDD解密总结

今晚听了王家林老师的第14课spark RDD解密,课堂笔记如下: Spark是基于工作集的应用抽象,RDD:Resillient Distributed Dataset是基于工作集的,spark可以对结果重用. 位置感知:spark比hadoop更精致. RDD是lazy的,是分布式函数式编程的抽象,RDD可以看做一个只读的List或者Array.产生的中间结果怎么办? 不能让 他立即计算,采用Lazy级别,只对数据处理做标记.所以RDD操作是有向的,链式的,所以Stage有1000个步骤,不

Spark RDD Transformation 简单用例(一)

map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: ClassTag](f: T => U): RDD[U]  map(func) Return a new distributed dataset formed by passing each element of the source through a function func.  将原RDD中的

【spark 深入学习 03】Spark RDD的蛮荒世界

RDD真的是一个很晦涩的词汇,他就是伯克利大学的博士们在论文中提出的一个概念,很抽象,很难懂:但是这是spark的核心概念,因此有必要spark rdd的知识点,用最简单.浅显易懂的词汇描述.不想用学术话的语言来阐述RDD是什么,用简单.容易理解的方式来描述. 一.什么是RDD,RDD出现的背景 Mapreduce计算模型的出现解决了分布式计算的诸多难题,但是由于MR对数据共享的解决方案比较低效,导致MR编程模型效率不高,将数据写到一个稳定的外部存储系统,如HDFS,这个会引起数据复写.磁盘IO