最大公约数gcd和最小公倍数lcm

gcd(a, b),就是求a和b的最大公约数

lcm(a, b),就是求a和b的最小公倍数

然后有个公式

a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •?∀•? ) 简写你懂吗)

解释(不想看就跳过){

  首先,求一个gcd,然后。。。

  a / gcd 和 b / gcd 这两个数互质了,也就是 gcd(   a / gcd ,b / gcd  )  =  1,然后。。。

  lcm = gcd *  (a / gcd) * (b / gcd)

  lcm = (a * b) / gcd

  所以。。a*b = gcd * lcm

}

所以要求lcm,先求gcd

辣么,问题来了,gcd怎么求

辗转相除法

while循环

1 LL gcd(LL a, LL b){
2     LL t;
3     while(b){
4         t = b;
5         b = a % b;
6         a = t;
7     }
8     return a;
9 }

还有一个递归写法

1 LL gcd(LL a, LL b){
2     if(b == 0) return a;
3     else return gcd(b, a%b);
4 }
5
6 LL gcd(LL a, LL b){
7     return b ? gcd(b, a%b) : a;
8 }
9 //两种都可以

辣么,lcm = a * b / gcd

(注意,这样写法有可能会错,因为a * b可能因为太大  超出int  或者 超出 longlong)

所以推荐写成 : lcm = a / gcd * b

然后几个公式自己证明一下

gcd(ka, kb) = k * gcd(a, b)

lcm(ka, kb) = k * lcm(a, b)

上次做题碰到这个公式

lcm(S/a, S/b) = S/gcd(a, b)

S = 9,a = 4,b = 6,小数不会lcm,只好保留分数形式去通分约分。

当我看到右边那个公式。。。。

这TM我怎么想的到,给我证明倒是会证。 T_T

时间: 2024-10-08 23:28:10

最大公约数gcd和最小公倍数lcm的相关文章

ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄? ̄))

gcd(a, b),就是求a和b的最大公约数 lcm(a, b),就是求a和b的最小公倍数 然后有个公式 a*b = gcd * lcm     ( gcd就是gcd(a, b), ( •?∀•? ) 简写你懂吗) 解释(不想看就跳过){ 首先,求一个gcd,然后... a / gcd 和 b / gcd 这两个数互质了,也就是 gcd(   a / gcd ,b / gcd  )  =  1,然后... lcm = gcd *  (a / gcd) * (b / gcd) lcm = (a *

1012 最小公倍数LCM(51NOD基础题)

1012 最小公倍数LCM(51NOD基础题) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最小公倍数. Input示例 30 105 Output示例 210 #include <cstdio> #define LL long long LL n , m ; LL result ; // 递归实现辗

Solve Equation gcd(x,y)=gcd(x+y,lcm(x,y)) gcd(x,y)=1 =&gt; gcd(x*y,x+y)=1

/** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生选拔赛题 题意:给定两个数的和以及他们的最小公倍数,求这两个数. 思路: x+y=A lcm(x,y)=B => x*y/gcd(x,y)=B 要把这两个公式联立,那么必须消掉gcd: 设:d = gcd(x,y), x = kx*d, y = ky*d; kx与ky互质: x+y=A => d(

1012 最小公倍数LCM

1012 最小公倍数LCM 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最小公倍数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最小公倍数. Input示例 30 105 Output示例 210 import java.util.Scanner; public class Main { static long gcd(long a,long b){ return a%b==0? b:gcd(

[2016-05-09][51nod][1012 最小公倍数LCM]

时间:2016-05-09 18:53:56 星期一 题目编号:[2016-05-09][51nod][1012 最小公倍数LCM] 题目大意:求a和b的最小公倍数 #include<cstdio> using namespace std; typedef long long ll; ll gcd(ll a,ll b){ return b == 0 ? a : gcd(b ,a%b); } ll lcm(ll a,ll b){ return a / gcd(a,b) * b; } int ma

light_oj 1236 求最小公倍数( lcm(a,b) )等于n的数对 素因数分解

light_oj 1236 求最小公倍数( lcm(a,b) )等于n的数对  素因数分解 H - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1236 Description Find the result of the following code: long long pairsFormL

1011 最大公约数GCD

1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 import java.util.Scanner; public class Main { static int gcd(int a,int b){ return a%b==0? b:gcd(b,a%

1011 最大公约数GCD(51NOD基础题)

1011 最大公约数GCD(51NOD基础题) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15 /* <1> 循环实现 辗转相除法 <2> 递归实现 辗转相除法 */ #include <cstdio> #defi

51nod 1011最大公约数GCD

1011 最大公约数GCD 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Input示例 30 105 Output示例 15百度~辗转相除法,嗯,wrong了4遍(逃) #include<stdio.h> int gcd(int a,int b) { int t; if(