BZOJ3500 : PA2008 Cliquers

设g[i]表示n=i时的答案,则OEIS上可以找到如下递推式:

g[i]=g[i-1]+g[i-2]-g[i-5]-g[i-7]+...

其中符号为++--交替,第i项为f[i],f[1]=1,f[2]=2,f[3]=5,f[4]=7

f[i]=3+2*f[i-2]-f[i-4]

注意到f[731]>200000,所以对于每个i,大约只有$O(\sqrt{i})$个决策。故时间复杂度为$O(n\sqrt{n})$。

#include<cstdio>
const int N=731,P=999999599;
int n,m,i,j,f[731],g[200001];
int main(){
  for(f[1]=1,f[2]=2,f[3]=5,f[4]=7,i=5;i<N;i++)f[i]=3+2*f[i-2]-f[i-4];
  for(scanf("%d%d",&n,&m),g[0]=i=1;i<=n;i++)for(j=1;f[j]<=i;j++)if((j+1)>>1&1)g[i]=(g[i]+g[i-f[j]])%(P-1);else g[i]=(g[i]-g[i-f[j]])%(P-1);
  for(i=(g[n]+P-1)%(P-1),j=1;i;i>>=1,m=1LL*m*m%P)if(i&1)j=1LL*j*m%P;
  return printf("%d",j),0;
}

  

时间: 2024-12-10 07:55:20

BZOJ3500 : PA2008 Cliquers的相关文章

BZOJ3501 : PA2008 Cliquers Strike Back

\[\begin{eqnarray*}ans&=&m^{\sum_{i=1}^n Stirling2(n,i)\bmod 999999598}\bmod 999999599\\&=&m^{B_n\bmod 999999598}\bmod 999999599\end{eqnarray*}\] 999999598=2*13*5281*7283,对于每个小质数依次计算,最后用中国剩余定理合并即可. 对于贝尔数,有 \[\begin{eqnarray*}B_{p+n}&\e

bzoj 3501 PA2008 Cliquers Strike Back——贝尔数

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3501 用贝尔三角形 p^2 地预处理 p 以内的贝尔数.可以模(mod-1)(它是每个分解下的质因子的倍数,所以不影响分开算的时候). 用公式:\( Bell[n+p^{m}]=m*Bell[n]+Bell[n+1] (mod p) \) \( Bell[n+p]=Bell[n]+Bell[n+1] (mod p) \) 把 n 看成 p 进制,O( p^2 * log m ) 地算. 大

??? cliquers

解:先推一个式子,然后就是CRT了... 那个阶乘怎么求呢?主要是分母可能有0,这时我们把分母的因子p全部提出来,上下次数相减判断即可. 细节颇多......注意在快速幂开始的时候a %= MO是个好习惯. 1 #include <cstdio> 2 #include <algorithm> 3 4 typedef long long LL; 5 const int N = 100010; 6 const LL MO = 1e9 - 401, mod[] = {0, 2, 13,