Map如我们所知,存储的是键值对,它的基本单位是实现了Map.Entry<K,V>的Node<K,V>,Node 的属性如下:
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Node<K,V> next; }
看定义就能知道它的作用了,能够看到它存储了一个指向下一个节点的对象next,由此我们是大概能够想到它的存储方式由链表进行存储,其实,通过翻阅资料我们也能够清楚的知道,HashMap其实是一个链表数组。它的结构如下图:
看到这之后,再看源码,应该能够清楚好多。
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable { /* * HashMap 的默认初识容量 * */ static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16 /** * HashMap的最大容量,假如存储1 << 30,需要在栈中存在2 ^ 30个指向指定堆 * 空间的对象空间,在32位机下,每个这样的对象空间为4字节;也就是说所有的 * 内存空间都会被用来存储Map,而jvm的堆大小和栈大小都是有上限的所以,一般 * 很难达到这么大 */ static final int MAXIMUM_CAPACITY = 1 << 30; /** * 默认的加载因子 */ static final float DEFAULT_LOAD_FACTOR = 0.75f; /** * 链表数组,它的索引稍后会详细说明 */ transient Node<K,V>[] table; /** * 使用keySet()和values()时会用到 */ transient Set<Map.Entry<K,V>> entrySet; /** * 存储了键值对的数量 */ transient int size; /** * 当前Map的修改次数,保持一致性 */ transient int modCount; /** * 数值为(capacity * load factor),是否进行resize的判断阙值 * */ int threshold; /** * Map的加载因子 * * @serial */ final float loadFactor; }
它有四个构造函数,如下:
HashMap() HashMap(int initialCapacity) HashMap(int initialCapacity, float loadFactor) HashMap(Map<? extends K,? extends V> m)
假如没有传入initialCapacity 或 loadFactor时会使用默认的 1<< 4也就是16 和 0.75两个参数。
当传入了initialCapacity 时,不会直接使用该值,而是计算大于他的最小2的 幂值。在jdk1.8相对于之前版本是由改进的:
//jdk 1.8 static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } //jdk 1.7 while (capacity < initialCapacity) capacity <<= 1;
每次想到这两个代码都很激动,代码很美,但也会产生一个疑问,我们在学数据结构的时候,书上教我们哈希表的大小应该设为大于指定值得最小质数,而这明显不符合说明,其实,这是为后续好多操作提供了方便。
这样操作之后n 其实是一个大于指定值得最小2的幂值再少1的值,假如传入的是9,n的值便是15,单看十进制好像没什么,但是化为2进制是1111,全部为1的话,能够很好的进行很多的操作。
计算出大小,分配空间之后我们便可以进行存储工作了。
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); else { for (int binCount = 0; ; ++binCount) { if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; } } if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
我们抛开TreeXXX的先不管,只看对table的操作,可以知道,节点在table中的索引其实是通过 hash & (n - 1) ,其中n 其实就是table[]的长度。而hash的计算是通过下列方法的调用得到:
static final int hash(Object key) { int h; return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
它能够保证在计算时,hashCode 高位的可用,使存入元素尽可能分散开来,同也可以观察到,元素存在的索引值之和key有关。
从整体来看,当传入值时,通过传入的hash值与capacity-1进行 & 操作得出索引i,通过访问p = table[i],判断p是否为空或者p.key 是否与key相等,当为空时,直接插入元素;当p.key == key时,更新value,不相等时,在链表最后面插入指定结点。
newNode代码如下:
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) { return new Node<>(hash, key, value, next); }
有一个操作 在我们去面试的时候,面试官可能会很感兴趣,resize();
在上代码之前,我们先来聊聊它的主要操作。
在不考虑极端的情况下,当之前的capacity大于0时,新的capacity会变成之前的两倍,而阙值也会同样增长;当之前的capacity小于0,但是阙值大于0,新的capacity就赋值为阙值;capacity和阙值等于0时,会被赋值为他们的默认值。容量规定好了,就需要把之前Map里的键值对存入到新的容器table里面,因为是通过计算哈希值确定索引,所以注定不能像List一样直接进行copy,于是只有重新根据每个Entry中存储的hash与capacity-1来计算索引。这是我们都会想到的。但是通过翻阅源码,我们又可以发现它的精妙之处。先附上代码吧。
final Node<K,V>[] resize() { Node<K,V>[] oldTab = table; int oldCap = (oldTab == null) ? 0 : oldTab.length; int oldThr = threshold; int newCap, newThr = 0; if (oldCap > 0) { if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; } else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; table = newTab; if (oldTab != null) { for (int j = 0; j < oldCap; ++j) { Node<K,V> e; if ((e = oldTab[j]) != null) { oldTab[j] = null; if (e.next == null) newTab[e.hash & (newCap - 1)] = e; else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); else { // preserve order Node<K,V> loHead = null, loTail = null; Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
看完代码,我们来说说它的精妙,当一个数扩大成之前的两倍之后例如 8 -> 16,它们减一的值得二进制码 111 -> 1111;可以看到增加了一个1000,也就是原来容量的大小。当有一个hash值与增大之后的容量减一也就是15进行与运算时,实际上与之前容量为8时的索引也就是变了与1000与的位,将容量扩大成之前的两倍时,可以看成是增加了一个与之前容器一样大的容器。很明显索引数值小的会放在容器的前面,大的放在之后。所以我们只需要计算hash
和 之前容量的值进行与运算的结果是否为1,就能知道原来的值是放在原处还是放在新增容器相对应的位置。只看文字有点难以理解,我们来看个图片:
假如需要将某个节点重新分配,它只有如上两种位置可以存放,当它的hash & oldCapacity == 1时,存在New区域;否则在Old区域。同时他也说明,键值对仍在固定位置或者New区相对应的固定位置,不可能Old区域中的简直到跑到Old区域的其他位置。
再看看具体代码:
首先先看 if(e.next == null),当它的next为null时,说明在这个位置上就只有一个键值对,所以,可以直接插入,当不为null时,为了提高效率,每个区域都存在tail 和head 节点,当tail != null时,直接将新节点插入在tail之后,否则加入到 head中。它的hi 和 lo区域就像我们图中的New和Old区域。
从上可以看到,每次讲容量扩大成2的幂级数,是非常漂亮的设计,其中很大的提高了效率。