分类算法中常用的评价指标

本文来自网络,属于对各评价指标的总结,如果看完之后,还不是很理解,可以针对每个评价指标再单独搜索一些学习资料。加油~!

对于分类算法,常用的评价指标有:

(1)Precision

(2)Recall

(3)F-score

(4)Accuracy

(5)ROC

(6)AUC

ps:不建议翻译成中文,尤其是Precision和Accuracy,容易引起歧义。

1.混淆矩阵

混淆矩阵是监督学习中的一种可视化工具,主要用于比较分类结果和实例的真实信息。矩阵中的每一行代表实例的预测类别,每一列代表实例的真实类别。

图1 混淆矩阵

如图1所示,在混淆矩阵中,包含以下四种数据:

a、真正(True Positive , TP):被模型预测为正的正样本

b、假正(False Positive , FP):被模型预测为正的负样本

c、假负(False Negative , FN):被模型预测为负的正样本

d、真负(True Negative , TN):被模型预测为负的负样本

根据这四种数据,有四个比较重要的比率,其中TPR和TNR更为常用:

  • 真正率(True Positive Rate , TPR)【灵敏度(sensitivity)】:TPR = TP /(TP + FN) ,即正样本预测结果数/ 正样本实际数
  • 假负率(False Negative Rate , FNR) :FNR = FN /(TP + FN) ,即被预测为负的正样本结果数/正样本实际数
  • 假正率(False Positive Rate , FPR) :FPR = FP /(FP + TN) ,即被预测为正的负样本结果数 /负样本实际数
  • 真负率(True Negative Rate , TNR)【特指度(specificity)】:TNR = TN /(TN + FP) ,即负样本预测结果数 / 负样本实际数 

2.评价指标

1)(Precision)P = TP/(TP+FP)

2)(Recall)R = TP/(TP+FN),即真正率

3)F-score:Precision和Recall的调和平均值, 更接近于P, R两个数较小的那个: F=2* P* R/(P + R)

4)(Aaccuracy): 分类器对整个样本的判定能力,即将正的判定为正,负的判定为负: A = (TP + TN)/(TP + FN + FP + TN)

5)ROC(Receiver Operating Characteristic):ROC的主要分析工具是一个画在ROC空间的曲线——ROC curve,横坐标为false positive rate(FPR),纵坐标为true positive rate(TPR)。

如何画ROC曲线?

对于二值分类问题,实例的值往往是连续值,通过设定一个阈值,将实例分类到正类或者负类(比如大于阈值划分为正类)。因此,可以变化阈值,根据不同的阈值进行分类,根据分类结果计算得到ROC空间中相应的点,连接这些点就形成ROC curve。ROC curve经过(0,0) (1,1),实际上(0,0)和(1,1)连线形成的ROC curve实际上代表的是一个随机分类器。一般情况下,这个曲线都应该处于(0,0)和(1,1)连线的上方,如图2所示。

图2 ROC曲线

ROC上几个关键点的解释:

(TPR=0,FPR=0):把每个实例都预测为负类的模型

(TPR=1,FPR=1):把每个实例都预测为正类的模型

(TPR=1,FPR=0):理想模型,全部预测正确

(TPR=0,FPR=1):最差模型,全部预测错误

一个好的分类模型应该尽可能靠近图形的左上角,而一个随机猜测模型应位于连接点(TPR=0,FPR=0)和(TPR=1,FPR=1)的主对角线上。

既然已经这么多评价标准,为什么还要使用ROC和AUC呢?

因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。

6)AUC(Area Under ROC Curve)

AUC的值就是处于ROC curve下方的那部分面积的大小。通常,AUC的值介于0.5到1.0之间,较大的AUC代表了较好的performance。如果模型是完美的,那么它的AUG = 1,如果模型是个简单的随机猜测模型,那么它的AUG = 0.5,如果一个模型好于另一个,则它的曲线下方面积相对较大。

时间: 2024-11-23 20:26:16

分类算法中常用的评价指标的相关文章

分类算法中的ROC与PR指标

做过图像识别.机器学习或者信息检索相关研究的人都知道,论文的实验部分都要和别人的算法比一比.可怎么比,人多嘴杂,我说我的方法好,你说你的方法好,各做各的总是不行--没规矩不成方圆.于是慢慢的大家就形成了一种约定,用ROC曲线和PR曲线来衡量算法的优劣.关于ROC曲线和PR曲线的详细介绍可参考资料: ROC Analysis and the ROC Convex Hull Tom Fawcett,An introduction to ROC analysis Jesse Davis,Mark Go

第一个分类算法

以前我们要预测的y是连续的,现在我们即将要讨论的分类算法中,y是离散的值. 先看一些分类的问题,像medical diagnosis--医学诊断,判断你是否生病:垃圾邮箱过滤器--判断一封邮件是不是垃圾邮箱. 也不是说这样的问题完全不能用线性回归的方式进行分类,但有很多时候,线性回归不能很好地进行分类. 假设现在我们知道这个y∈{0,1},y只能取0或1. ,所以我们的假设hθ(x)不能再是线性函数                                    所以现在我们要改变我们的h

逻辑回归分类算法

逻辑回归由于其简单.高效.可解释性强的特点,在实际用途中十分的广泛:从购物预测到用户营销响应,从流失分析到信用评价,都能看到其活跃的身影.可以说逻辑回归占据了分类算法中非常重要的地位. 逻辑回归:logistic regression,LR.模型公式是Logistic函数,也叫Sigmoid函数.图像形如S型曲线.它可以将实数映射到[0,1]区间用来做二分类.一般选择0.5作为阀值,大于阀值的归为类1,小于阀值的归为类0.公式(Y为决策值,x为特征值,e为自然对数): 如果希望对正例样本有更高的

推荐系统中常用算法 以及优点缺点对比

推荐系统中常用算法 以及优点缺点对比 在 推荐系统简介中,我们给出了推荐系统的一般框架.很明显,推荐方法是整个推荐系统中最核心.最关键的部分,很大程度上决定了推荐系统性能的优劣.目前,主要的推荐方法包括:基于内容推荐.协同过滤推荐.基于关联规则推荐.基于效用推荐.基于知识推荐和组合推荐. 一.基于内容推荐 基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要依据用户对项目的评价意见,更多地需要用机 器

数据挖掘中分类算法小结

数据挖掘中分类算法小结 数据仓库,数据库或者其它信息库中隐藏着许多可以为商业.科研等活动的决策提供所需要的知识.分类与预测是两种数据分析形式,它们可以用来抽取能够描述重要数据集合或预测未来数据趋势的模型.分类方法(Classification)用于预测数据对象的离散类别(Categorical Label);预测方法(Prediction )用于预测数据对象的连续取值. 分类技术在很多领域都有应用,例如可以通过客户分类构造一个分类模型来对银行贷款进行风险评估;当前的市场营销中很重要的一个特点是强

模式识别之基础---常用分类算法特性归纳

常用的分类算法主要有决策树,贝叶斯,KNN,SVM,神经网络以及基于规则的分类算法. 本文主要对各种分类算法的特性做一下总结. 1. 决策树算法 决策树算法是一种构建分类模型的非参数方法,它不要求任何先验假设,不假定类和其他属性服从一定的概率分布. 找到最佳决策树是NP完全问题,许多决策树算法都采取启发式的方法指导对假定空间的搜索. 现有的决策树构建技术不需要昂贵的计算代价,即使训练集非常大,也可以快速建立模型.同时,决策树一旦建立,未知样本分类非常快,最坏情况下的时间复杂度为o(w),其中 w

Spark中常用的算法

Spark中常用的算法: 3.2.1 分类算法 分类算法属于监督式学习,使用类标签已知的样本建立一个分类函数或分类模型,应用分类模型,能把数据库中的类标签未知的数据进行归类.分类在数据挖掘中是一项重要的任务,目前在商业上应用最多,常见的典型应用场景有流失预测.精确营销.客户获取.个性偏好等.MLlib 目前支持分类算法有:逻辑回归.支持向量机.朴素贝叶斯和决策树. 案例:导入训练数据集,然后在训练集上执行训练算法,最后在所得模型上进行预测并计算训练误差. import org.apache.sp

R中常用数据挖掘算法包

数据挖掘主要分为4类,即预测.分类.聚类和关联,根据不同的挖掘目的选择相应的算法.下面对R语言中常用的数据挖掘包做一个汇总: 连续因变量的预测: stats包 lm函数,实现多元线性回归 stats包 glm函数,实现广义线性回归 stats包 nls函数,实现非线性最小二乘回归 rpart包 rpart函数,基于CART算法的分类回归树模型 RWeka包 M5P函数,模型树算法,集线性回归和CART算法的优点 adabag包 bagging函数,基于rpart算法的集成算法 adabag包 b

转:【总结】推荐系统中常用算法 以及优点缺点对比

转:http://www.sohu.com/a/108145158_464065 在推荐系统简介中,我们给出了推荐系统的一般框架.很明显,推荐方法是整个推荐系统中最核心.最关键的部分,很大程度上决定了推荐系统性能的优劣.目前,主要的推荐方法包括:基于内容推荐.协同过滤推荐.基于关联规则推荐.基于效用推荐.基于知识推荐和组合推荐. 一.基于内容推荐 基 于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内容信息上作出推荐的,而不需要