Find out who the “mole” is?

Blueheat Company’s  production server was out of order again. The CEO was very upset and want their CIO Leo to figure out what happened. Leo asked those IT guys to investigate what’s  going on but in vain. That’s a SUN SPARC server running Solaris 10 and those IT guys could not find anything unusual.

The CEO decided to call the Police when that production server crashed again. Forensic  guy R started to conduct an investigation on firewall and security logs of that server to identify whether the attack was from outside or not. He found no threat from outside, and he thought  there was a “mole” in this company. That’s a serious situation. IT guys were familiar with those systems, and if one of them was the “mole”, it’s difficult to distinguish who was the mole or not only by checking daily operations.

Blueheat had more than ten IT guys including Developers, DBAs, System Engineers, etc in IT department. They all needed to access server farms all day, and also they got permissions to acess server farms. So it’s difficult to identify what’s normal operations and what’s unusual operations. Forensic guy R decided to deploy monitoring script on that SUN SPARC server,and the monitoring script will record timestamp, source ip, user account, and any key stroke. Also it will send alerts to forensic guy’s mailbox automatically.

Couple days later fortunately forensic guy R found a connection log on 2010/1/5 15:14. Guess what? The “mole” tried to edit a script and he/she disabled Samba service. He/she also took a look at the file “/etc/passwd” on 2010/1/5 15:14. Forensic guy R checked the DHCP log and found that IT guy Mr.A used that ip as exactly in monitoring log of 2010/1/5 15:14.

Forensic guy R examined Mr.A’s workstation and found some scripts could do something bad to servers. Finally Mr.A confessed the crime he did and got caught.

时间: 2024-10-30 02:37:53

Find out who the “mole” is?的相关文章

(状压dp)ABC 067 F : Mole and Abandoned Mine

Mole decided to live in an abandoned mine. The structure of the mine is represented by a simple connected undirected graph which consists of N vertices numbered 1through N and M edges. The i-th edge connects Vertices ai and bi, and it costs ciyen (th

【BZOJ4849】[Neerc2016]Mole Tunnels 模拟费用流

[BZOJ4849][Neerc2016]Mole Tunnels Description 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃.一共有m只鼹鼠,第i只鼹鼠住在第pi个洞内,一天早晨,前k只鼹鼠醒来了,而后n-k只鼹鼠均在睡觉,前k只鼹鼠就开始觅食,最终他们都会到达某一个洞,使得所有洞的ci均大于等于该洞内醒着的鼹鼠个数,而且要求鼹鼠行动路径总长度最小.现对于所有的1<=k

C#程序员整理的Unity 3D笔记(二十):2D Toolkit之官方教程《Whack a Mole》

在上篇博客中,简单整理了一下Unity Native 2D功能:<C#程序员整理的Unity 3D笔记(十九):Unity 3D的Native 2D>. 本文开始学习2D商用比较广泛的2D Toolkit插件. 2D Toolkit插件在2D中的地位,犹如UI中NGUI对Unity GUI一样:虽然官方原生的2D还不错,但这是最近1年新版本才有的功能,2年前Unity 2D的王道还是得用插件的,故<2D Toolkit>就成了目前商业不错的选择. 在上周刚开始看的时候,就给自己提了

Codeforces Gym 101190M Mole Tunnels - 费用流

题目传送门 传送门 题目大意 $m$只鼹鼠有$n$个巢穴,$n - 1$条长度为$1$的通道将它们连通且第$i(i > 1)$个巢穴与第$\left\lfloor \frac{i}{2}\right\rfloor$个巢穴连通.第$i$个巢穴在最终时允许$c_i$只醒来的鼹鼠最终停留在这.已知第$i$只鼹鼠在第$p_i$个巢穴睡觉.要求求出对于每个满足$1 \leqslant k \leqslant n$的$k$,如果前$k$只鼹鼠醒来,最小的移动距离的总和. 考虑费用流的建图和暴力做法,把原图的

[bzoj4849][Neerc2016]Mole Tunnels

来自FallDream的博客,未经允许,请勿转载,谢谢 貌似是省队集训女队讲的题... 今天在bzoj找一道题无果,但是翻到了这道就顺便写了下. 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃.一共有m只鼹鼠,第i只鼹鼠住在第pi个洞内,一天早晨,前k只鼹鼠醒来了,而后n-k只鼹鼠均在睡觉,前k只鼹鼠就开始觅食,最终他们都会到达某一个洞,使得所有洞的ci均大于等于该洞内醒着的鼹鼠个数,

Mole Box V2.6.5脱壳分析

作者:Fly2015 这个程序是吾爱破解脱壳练习第8期的加壳程序,该程序的壳是MoleBox V2.6.5壳,之前也碰过该种壳但是这个程序似乎要复杂一点. 首先对加壳程序进行侦壳处理. Exeinfo PE侦壳的结果: DIE侦壳的结果,很显然DIE告诉我们被加壳程序的源程序使用Delphi编写的,这个比较有用,对于我们找到程序的真实OEP很有帮助作用. OD载入该加MoleBox V2.6.5壳的程序,入口点汇编的代码如图.看到PUSHAD,我们很自然会想到使用ESP定律进行脱壳.F8单步走到

AT2657 Mole and Abandoned Mine

传送门 好神的状压dp啊 首先考虑一个性质,删掉之后的图一定是个联通图 并且每个点最多只与保留下来的那条路径上的一个点有边相连 然后设状态:\(f[s][t]\)代表当前联通块的点的状态为\(s\)和路径结尾的点\(t\) 然后考虑转移,要么拓展一个点作为路径,要么挂一个联通块到当前路径结尾的点上 代码: #include<cstdio> #include<algorithm> #include<cstring> #include<iostream> #in

题解-AtCoder ARC-078F Mole and Abandoned Mine

problem ATC-arc078F 题意概要:给定一个 \(n\) 点 \(m\) 边简单无向图(无自环无重边),边有费用,现切去若干条边,使得从 \(1\) 到 \(n\) 有且仅有一条简单路径,求最小化花费. \(n\le 15, n-1\le m\le \binom n2\) Solution 看到 \(n\leq 15\) 大概就能猜到复杂度是 \(O(3^n)\) 左右的,然后直接思考用斯坦纳树咋解,无果. 开始思考最终局面的情况,一定是有一条 \(1\) 到 \(n\) 的路径,

AtCoder arc078_d Mole and Abandoned Mine

洛谷题目页面传送门 & AtCoder题目页面传送门 给定一个无向连通带权图\(G=(V,E),|V|=n,|E|=m\)(节点从\(0\)开始编号),要删掉一些边使得节点\(0\)到\(n-1\)有且只有\(1\)条简单路径,求最小的删掉的边的权值和. \(n\in[2,15],m\in\left[n-1,\dfrac{n(n-1)}2\right]\),\(G\)中没有重边或自环. 这个问题显然可以转化为:求最大的删过边之后的图的边权和,再用原图的边权和减去它. 考率删过边之后的图\(G'(