本期内容:
1、Executor的WAL容错机制
2、消息重放
Executor的安全容错主要是数据的安全容错,那为什么不考虑数据计算的安全容错呢?
原因是计算的时候Spark Streaming是借助于Spark Core上RDD的安全容错的,所以天然的安全可靠的。
Executor的安全容错主要有:
1、数据副本:
有两种方式:a.借助底层的BlockManager,BlockManager做备份,通过传入的StorageLevel进行备份。
b. WAL方式进行容错。
2、接受到数据之后,不做副本,但是数据源支持存放,所谓存放就是可以反复的读取源数据。
容错的弊端:耗时间、耗空间。
简单的看下源代码:
/** Store block and report it to driver */def pushAndReportBlock( receivedBlock: ReceivedBlock,metadataOption: Option[Any],blockIdOption: Option[StreamBlockId] ) {val blockId = blockIdOption.getOrElse(nextBlockId)val time = System.currentTimeMillisval blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock) logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")val numRecords = blockStoreResult.numRecordsval blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult)trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo)) logDebug(s"Reported block $blockId")}
private val receivedBlockHandler: ReceivedBlockHandler = {if (WriteAheadLogUtils.enableReceiverLog(env.conf)) {if (checkpointDirOption.isEmpty) {throw new SparkException("Cannot enable receiver write-ahead log without checkpoint directory set. " +"Please use streamingContext.checkpoint() to set the checkpoint directory. " +"See documentation for more details.") }new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId,receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get) //通过WAL容错 } else {new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel) //通过BlockManager进行容错 }}
def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = {var numRecords = None: Option[Long]val putResult: Seq[(BlockId, BlockStatus)] = block match {case ArrayBufferBlock(arrayBuffer) => numRecords = Some(arrayBuffer.size.toLong) blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel,tellMaster = true)case IteratorBlock(iterator) =>val countIterator = new CountingIterator(iterator)val putResult = blockManager.putIterator(blockId, countIterator, storageLevel,tellMaster = true) numRecords = countIterator.count putResultcase ByteBufferBlock(byteBuffer) => blockManager.putBytes(blockId, byteBuffer, storageLevel, tellMaster = true)case o =>throw new SparkException(s"Could not store $blockId to block manager, unexpected block type ${o.getClass.getName}") }if (!putResult.map { _._1 }.contains(blockId)) {throw new SparkException(s"Could not store $blockId to block manager with storage level $storageLevel") }BlockManagerBasedStoreResult(blockId, numRecords)}
简单流程图:
参考博客:http://blog.csdn.net/hanburgud/article/details/51471089
备注:
资料来源于:DT_大数据梦工厂(Spark发行版本定制)
更多私密内容,请关注微信公众号:DT_Spark
如果您对大数据Spark感兴趣,可以免费听由王家林老师每天晚上20:00开设的Spark永久免费公开课,地址YY房间号:68917580
时间: 2024-10-13 17:30:30