自动化运维Python系列之Memcache、Redis操作

Memcached

Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。Memcached基于一个存储键/值对的hashmap。其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信。

Memcached安装

wget http://memcached.org/latest
tar -zxvf memcached-1.x.x.tar.gz
cd memcached-1.x.x
./configure && make && make test && sudo make install
 
PS:依赖libevent
       yum install libevent-devel
       apt-get install libevent-dev

Memcache启动

memcached -d -m 10 -u root -l 10.0.0.111 -p 11211 -c 8192
 
参数说明:
    -d 是启动一个守护进程
    -m 是分配给Memcache使用的内存数量,单位是MB
    -u 是运行Memcache的用户
    -l 是监听的服务器IP地址
    -p 是设置Memcache监听的端口,最好是1024以上的端口
    -c 选项是最大运行的并发连接数,默认是1024,按照你服务器的负载量来设定
    -P 是设置保存Memcache的pid文件

Memcache命令

# 存储命令: set/add/replace/append/prepend/cas
# 获取命令: get/gets
# 其他命令: delete/stats..
  
set key flags exptime bytes [noreply] 
value 
  
key:键值 key-value 结构中的 key,用于查找缓存值。
flags:可以包括键值对的整型参数,客户机使用它存储关于键值对的额外信息 。
exptime:在缓存中保存键值对的时间长度(以秒为单位,0 表示永远)
bytes:在缓存中存储的字节数
noreply(可选): 该参数告知服务器不需要返回数据
value:存储的值(始终位于第二行)(可直接理解为key-value结构中的value)
  
例子:
[[email protected] ~]# telnet 10.0.0.111 11211
Trying 10.0.0.111...
Connected to 10.0.0.111.
Escape character is ‘^]‘.
set user01 0 0 6
STORED
get user01
VALUE user01 0 6
STORED
END

Python操作Memcache

安装API

# 安装Python-memcached模块
C:\Users\lilongzi>pip install python-memcached
Collecting python-memcached
  Downloading python-memcached-1.58.tar.gz
...

1)第一次操作

import memcache
 
# debug=True 表示显示运行时错误信息 上线后可移除
mc = memcache.Client([‘10.0.0.111:11211‘], debug=True)
 
mc.set(‘name01‘, ‘jordan‘)
ret = mc.get(‘name01‘)
print(ret)

2)天生支持集群

Python-memcached模块原生支持集群操作,其原理是在内存中维护了一个主机列表,且集群中主机的权重值和主机列表中重复出现的次数成正比

# 如果用户根据如果要在内存中创建一个键值对(如:k1 = "v1"),那么要执行一下步骤:
  
①根据算法将 k1 转换成一个数字
②将数字和主机列表长度求余数,得到一个值 N( 0 <= N < 列表长度 )
③在主机列表中根据 第2步得到的值为索引获取主机,例如:host_list[N]
④连接 将第3步中获取的主机,将 k1 = "v1" 放置在该服务器的内存中
 
mc = memcache.Client([(‘10.0.0.1:11211‘, 1), (‘10.0.0.2:11211‘, 2)], debug=True)
mc.set(‘k1‘, ‘v1‘)

3)add

添加一对键值时,如果已经存在key,重复执行会报错

import memcache
  
mc = memcache.Client([‘10.0.0.1:11211‘], debug=True)
mc.add(‘k1‘, ‘v1‘)
# mc.add(‘k1‘, ‘v2‘) # 报错,对已经存在的key重复添加,失败!!!

4)replace

replace修改某个键值时,如果key不存在则报错
import memcache
  
mc = memcache.Client([‘10.0.0.1:11211‘], debug=True)
# 如果memcache中存在kkkk,则替换成功,否则一场
mc.replace(‘kkkk‘,‘999‘)

5)set和set_multi

set       设置一个键值对,如果key不存在,则创建,如果key存在,则修改

set_multi   设置多个键值对,如果key不存在,则创建,如果key存在,则修改

mc = memcache.Client([‘10.0.0.1:11211‘], debug=True)
 
mc.set(‘key1‘, ‘Jordan‘)
mc.set_multi({‘key1‘: ‘val1‘, ‘key2‘: ‘val2‘})

6)delete和delete_multi

delete          在Memcached中删除指定的一个键值对

delete_multi    在Memcached中删除指定的多个键值对

import memcache
  
mc = memcache.Client([‘10.0.0.1:11211‘], debug=True)
mc.delete(‘key0‘)
mc.delete_multi([‘key1‘, ‘key2‘])

7) get和get_multi

get       获取一个键值对

get_multi   获取多一个键值对

import memcache
  
mc = memcache.Client([‘10.0.0.1:11211‘], debug=True)
val = mc.get(‘key0‘)
item_dict = mc.get_multi(["key1", "key2", "key3"])

8) append和prepend 

append    修改指定key的值,在该值 后面 追加内容

prepend   修改指定key的值,在该值 前面 插入内容

import memcache
 
mc = memcache.Client([‘10.0.0.1:11211‘], debug=True)
# k1 = "v1"
 
mc.append(‘k1‘, ‘after‘)
# k1 = "v1after"
 
mc.prepend(‘k1‘, ‘before‘)
# k1 = "beforev1after"

9)decr和incr

incr 自增,将Memcached中的某一个值增加 N ( N默认为1 )

decr 自减,将Memcached中的某一个值减少 N ( N默认为1 )

import memcache
 
mc = memcache.Client([‘10.211.55.4:12000‘], debug=True)
mc.set(‘k1‘, ‘777‘)
 
mc.incr(‘k1‘)
# k1 = 778
 
mc.incr(‘k1‘, 10)
# k1 = 788
 
mc.decr(‘k1‘)
# k1 = 787
 
mc.decr(‘k1‘, 10)
# k1 = 777

10)gets 和 cas

避免多个用户同时修改数据从而导致数据不准确的情况

import memcache
mc = memcache.Client([‘10.0.0.1:11211‘], debug=True, cache_cas=True)
 
v = mc.gets(‘product_count‘)
# ...
# 如果有人在gets之后和cas之前修改了product_count,那么,下面的设置将会执行失败,剖出异常
# 从而避免非正常数据的产生
mc.cas(‘product_count‘, "899")

Redis

redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

Redis安装

# yum install -y redis
or
# wget http://download.redis.io/releases/redis-3.0.6.tar.gz
# tar xzf redis-3.0.6.tar.gz
# cd redis-3.0.6
# make

启动

/etc/init.d/redis start
lsof -i:6379
redis-cli -h 10.0.0.111 -p 6379

Python操作Redis

# 安装API
# pip install redis

redis-py 的API的使用可以分类为:

·连接方式
·连接池
·操作
    String 操作
    Hash   操作
    List   操作
    Set    操作
    SortSet 操作
·管道
·发布订阅

1)操作模式

redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令,Redis是StrictRedis的子类,用于向后兼容旧版本的redis-py。

import redis
 
r = redis.Redis(host=‘10.0.0.111‘, port=‘6379‘)
r.set(‘foo‘, ‘Bar‘)
print(r.get(‘foo‘))

2)连接池

redis-py使用connection pool来管理对一个redis server的所有连接,避免每次建立、释放连接的开销。默认,每个Redis实例都会维护一个自己的连接池。可以直接建立一个连接池,然后作为参数Redis,这样就可以实现多个Redis实例共享一个连接池

import redis
 
pool = redis.ConnectionPool(host=‘10.0.0.111‘, port=6379)
 
r = redis.Redis(connection_pool=pool)
r.set(‘foo‘, ‘Bar‘)
print(r.get(‘foo‘))

3)操作

string操作,redis中的string在内存中按照一个name对应一个value来存储

set(name, value, ex=None, px=None, nx=False, xx=False)

# 在Redis中设置值,默认,不存在则创建,存在则修改
参数:
     ex,过期时间(秒)
     px,过期时间(毫秒)
     nx,如果设置为True,则只有name不存在时,当前set操作才执行
     xx,如果设置为True,则只有name存在时,岗前set操作才执行

setnx(name, value)

# 设置值,只有name不存在时,执行设置操作(添加)

setex(name, value, time)

# 设置值
# 参数:
    # time,过期时间(数字秒 或 timedelta对象)
mset(*args, **kwargs)
批量设置值
如:
    mset(k1=‘v1‘, k2=‘v2‘)
    或
    mget({‘k1‘: ‘v1‘, ‘k2‘: ‘v2‘})

get(name)

# 获取值

mget(keys, *args)

# 批量获取
如:
    mget(‘ylr‘, ‘wupeiqi‘)
    或
    r.mget([‘ylr‘, ‘wupeiqi‘])

getset(name, value)

# 设置新值并获取原来的值

getrange(key, start, end)

# 获取子序列(根据字节获取,非字符)
# 参数:
    # name,Redis 的 name
    # start,起始位置(字节)
    # end,结束位置(字节)
# 如: "黎承兵" ,0-3表示 "黎"

setrange(name, offset, value)

# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后添加)
# 参数:
    # offset,字符串的索引,字节(一个汉字三个字节)
    # value,要设置的值

setbit(name, offset, value)

# 对name对应值的二进制表示的位进行操作
 
# 参数:
    # name,redis的name
    # offset,位的索引(将值变换成二进制后再进行索引)
    # value,值只能是 1 或 0
 
# 注:如果在Redis中有一个对应: n1 = "foo",
        那么字符串foo的二进制表示为:01100110 01101111 01101111
    所以,如果执行 setbit(‘n1‘, 7, 1),则就会将第7位设置为1,
        那么最终二进制则变成 01100111 01101111 01101111,即:"goo"

getbit(name, offset)

# 获取name对应的值的二进制表示中的某位的值 (0或1)

bitcount(key, start=None, end=None)

# 获取name对应的值的二进制表示中 1 的个数
# 参数:
    # key,Redis的name
    # start,位起始位置
    # end,位结束位置

bitop(operation, dest, *keys)

# 获取多个值,并将值做位运算,将最后的结果保存至新的name对应的值
 
# 参数:
    # operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)
    # dest, 新的Redis的name
    # *keys,要查找的Redis的name
 
# 如:
    bitop("AND", ‘new_name‘, ‘n1‘, ‘n2‘, ‘n3‘)
    # 获取Redis中n1,n2,n3对应的值,然后讲所有的值做位运算(求并集),然后将结果保存 new_name 对应的值中

strlen(name)

# 返回name对应值的字节长度(一个汉字3个字节)

incr(self, name, amount=1)

# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(必须是整数)
 
# 注:同incrby
incrbyfloat(self, n

ame, amount=1.0)

# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
 
# 参数:
    # name,Redis的name
    # amount,自增数(浮点型)
decr(self, name, amount=1)
# 自减 name对应的值,当name不存在时,则创建name=amount,否则,则自减。
 
# 参数:
    # name,Redis的name
    # amount,自减数(整数)

append(key, value)

# 在redis name对应的值后面追加内容
 
# 参数:
    key, redis的name
    value, 要追加的字符串

Hash操作,redis中Hash在内存中的存储格式

Redis hash 是一个string类型的field和value的映射表,hash特别适合用于存储对象。

Redis 中每个 hash 可以存储 232 - 1 键值对(40多亿)。

hset(name, key, value)

# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)
 
# 参数:
    # name,redis的name
    # key,name对应的hash中的key
    # value,name对应的hash中的value
 
# 注:
    # hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)

hmset(name, mapping)

# 在name对应的hash中批量设置键值对
 
# 参数:
    # name,redis的name
    # mapping,字典,如:{‘k1‘:‘v1‘, ‘k2‘: ‘v2‘}
 
# 如:
    # r.hmset(‘xx‘, {‘k1‘:‘v1‘, ‘k2‘: ‘v2‘})

hget(name,key)

# 在name对应的hash中获取根据key获取value

hmget(name, keys, *args)

# 在name对应的hash中获取多个key的值
 
# 参数:
    # name,reids对应的name
    # keys,要获取key集合,如:[‘k1‘, ‘k2‘, ‘k3‘]
    # *args,要获取的key,如:k1,k2,k3
 
# 如:
    # r.mget(‘xx‘, [‘k1‘, ‘k2‘])
    # 或
    # print r.hmget(‘xx‘, ‘k1‘, ‘k2‘)

hgetall(name)

# 获取name对应hash的所有键值

hlen(name)

# 获取name对应的hash中键值对的个数

hkeys(name)

# 获取name对应的hash中所有的key的值

hvals(name)

# 获取name对应的hash中所有的value的值

hexists(name, key)

# 检查name对应的hash是否存在当前传入的key

hdel(name,*keys)

# 将name对应的hash中指定key的键值对删除

hincrby(name, key, amount=1)

# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(整数)
hincrbyfloat(name, key, amount=1.0)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
 
# 参数:
    # name,redis中的name
    # key, hash对应的key
    # amount,自增数(浮点数)
 
# 自增name对应的hash中的指定key的值,不存在则创建key=amount

hscan(name, cursor=0, match=None, count=None)

# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆
 
# 参数:
    # name,redis的name
    # cursor,游标(基于游标分批取获取数据)
    # match,匹配指定key,默认None 表示所有的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
 
# 如:
    # 第一次:cursor1, data1 = r.hscan(‘xx‘, cursor=0, match=None, count=None)
    # 第二次:cursor2, data1 = r.hscan(‘xx‘, cursor=cursor1, match=None, count=None)
    # ...
    # 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕

hscan_iter(name, match=None, count=None)

# 利用yield封装hscan创建生成器,实现分批去redis中获取数据
 
# 参数:
    # match,匹配指定key,默认None 表示所有的key
    # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
 
# 如:
    # for item in r.hscan_iter(‘xx‘):
    #     print item

List操作,redis中的List在在内存中按照一个name对应一个List来存储

lpush(name,values)

# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边
 
# 如:
    # r.lpush(‘oo‘, 11,22,33)
    # 保存顺序为: 33,22,11
 
# 扩展:
    # rpush(name, values) 表示从右向左操作
# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边
 
# 如:
    # r.lpush(‘oo‘, 11,22,33)
    # 保存顺序为: 33,22,11
 
# 扩展:
    # rpush(name, values) 表示从右向左操作
lpushx(name,value)
# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边
 
# 更多:
    # rpushx(name, value) 表示从右向左操作

llen(name)

# name对应的list元素的个数

linsert(name, where, refvalue, value))

# 在name对应的列表的某一个值前或后插入一个新值
 
# 参数:
    # name,redis的name
    # where,BEFORE或AFTER
    # refvalue,标杆值,即:在它前后插入数据
    # value,要插入的数据

r.lset(name, index, value)

# 对name对应的list中的某一个索引位置重新赋值
 
# 参数:
    # name,redis的name
    # index,list的索引位置
    # value,要设置的值

r.lrem(name, value, num)

# 在name对应的list中删除指定的值
 
# 参数:
    # name,redis的name
    # value,要删除的值
    # num,  num=0,删除列表中所有的指定值;
           # num=2,从前到后,删除2个;
           # num=-2,从后向前,删除2个

lpop(name)

# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素
 
# 更多:
    # rpop(name) 表示从右向左操作

lindex(name, index)

# 在name对应的列表中根据索引获取列表元素

lrange(name, start, end)

# 在name对应的列表分片获取数据
# 参数:
    # name,redis的name
    # start,索引的起始位置
    # end,索引结束位置

ltrim(name, start, end)

# 在name对应的列表中移除没有在start-end索引之间的值
# 参数:
    # name,redis的name
    # start,索引的起始位置
    # end,索引结束位置

rpoplpush(src, dst)

# 从一个列表取出最右边的元素,同时将其添加至另一个列表的最左边
# 参数:
    # src,要取数据的列表的name
    # dst,要添加数据的列表的name

blpop(keys, timeout)

# 将多个列表排列,按照从左到右去pop对应列表的元素
 
# 参数:
    # keys,redis的name的集合
    # timeout,超时时间,当元素所有列表的元素获取完之后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞
 
# 更多:
    # r.brpop(keys, timeout),从右向左获取数据

brpoplpush(src, dst, timeout=0)

# 从一个列表的右侧移除一个元素并将其添加到另一个列表的左侧
 
# 参数:
    # src,取出并要移除元素的列表对应的name
    # dst,要插入元素的列表对应的name
    # timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞
自定义增量迭代
# 由于redis类库中没有提供对列表元素的增量迭代,如果想要循环name对应的列表的所有元素,那么就需要:
    # 1、获取name对应的所有列表
    # 2、循环列表
# 但是,如果列表非常大,那么就有可能在第一步时就将程序的内容撑爆,所有有必要自定义一个增量迭代的功能:
 
def list_iter(name):
    """
    自定义redis列表增量迭代
    :param name: redis中的name,即:迭代name对应的列表
    :return: yield 返回 列表元素
    """
    list_count = r.llen(name)
    for index in xrange(list_count):
        yield r.lindex(name, index)
 
# 使用
for item in list_iter(‘pp‘):
    print(item)

Set操作,Set集合就是不允许重复的列表

sadd(name,values)

# name对应的集合中添加元素

scard(name)

# 获取name对应的集合中元素个数

sdiff(keys, *args)

# 在第一个name对应的集合中且不在其他name对应的集合的元素集合

sdiffstore(dest, keys, *args)

# 获取第一个name对应的集合中且不在其他name对应的集合,再将其新加入到dest对应的集合中

sinter(keys, *args)

# 获取多一个name对应集合的并集

sinterstore(dest, keys, *args)

# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中

sismember(name, value)

# 检查value是否是name对应的集合的成员

smembers(name)

# 获取name对应的集合的所有成员

smove(src, dst, value)

# 将某个成员从一个集合中移动到另外一个集合

spop(name)

# 从集合的右侧(尾部)移除一个成员,并将其返回

srandmember(name, numbers)

# 从name对应的集合中随机获取 numbers 个元素

srem(name, values)

# 在name对应的集合中删除某些值

sunion(keys, *args)

# 获取多一个name对应的集合的并集

sunionstore(dest,keys, *args)

# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中

sscan(name, cursor=0, match=None, count=None)

sscan_iter(name, match=None, count=None)

# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大

有序集合,在集合的基础上,为每元素排序;元素的排序需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。

zadd(name, *args, **kwargs)

# 在name对应的有序集合中添加元素
# 如:
     # zadd(‘zz‘, ‘n1‘, 1, ‘n2‘, 2)
     # 或
     # zadd(‘zz‘, n1=11, n2=22)

zcard(name)

# 获取name对应的有序集合元素的数量

zcount(name, min, max)

# 获取name对应的有序集合中分数 在 [min,max] 之间的个数

zincrby(name, value, amount)

# 自增name对应的有序集合的 name 对应的分数

r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)

# 按照索引范围获取name对应的有序集合的元素
# 参数:
    # name,redis的name
    # start,有序集合索引起始位置(非分数)
    # end,有序集合索引结束位置(非分数)
    # desc,排序规则,默认按照分数从小到大排序
    # withscores,是否获取元素的分数,默认只获取元素的值
    # score_cast_func,对分数进行数据转换的函数
# 更多:
    # 从大到小排序
    # zrevrange(name, start, end, withscores=False, score_cast_func=float)
    # 按照分数范围获取name对应的有序集合的元素
    # zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
    # 从大到小排序
    # zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)

zrank(name, value)

# 获取某个值在 name对应的有序集合中的排行(从 0 开始)
# 更多:
    # zrevrank(name, value),从大到小排序

zrangebylex(name, min, max, start=None, num=None)

# 当有序集合的所有成员都具有相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则可以返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员
# 对集合中的每个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 如果两个字符串有一部分内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大
# 参数:
    # name,redis的name
    # min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间
    # min,右区间(值)
    # start,对结果进行分片处理,索引位置
    # num,对结果进行分片处理,索引后面的num个元素
 
# 如:
    # ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga
    # r.zrangebylex(‘myzset‘, "-", "[ca") 结果为:[‘aa‘, ‘ba‘, ‘ca‘]
 
# 更多:
    # 从大到小排序
    # zrevrangebylex(name, max, min, start=None, num=None)

zrem(name, values)

# 删除name对应的有序集合中值是values的成员
# 如:zrem(‘zz‘, [‘s1‘, ‘s2‘])

zremrangebyrank(name, min, max)

# 根据排行范围删除

zremrangebyscore(name, min, max)

# 根据分数范围删除

zremrangebylex(name, min, max)

# 根据值返回删除

zscore(name, value)

# 获取name对应有序集合中 value 对应的分数

zinterstore(dest, keys, aggregate=None)

# 获取两个有序集合的交集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为:  SUM  MIN  MAX

zunionstore(dest, keys, aggregate=None)

# 获取两个有序集合的并集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为:  SUM  MIN  MAX

zscan(name, cursor=0, match=None, count=None, score_cast_func=float)

zscan_iter(name, match=None, count=None,score_cast_func=float)

# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作

其他常用操作

delete(*names)

# 根据删除redis中的任意数据类型

exists(name)

# 检测redis的name是否存在

keys(pattern=‘*‘)

# 根据模型获取redis的name
 
# 更多:
    # KEYS * 匹配数据库中所有 key 。
    # KEYS h?llo 匹配 hello , hallo 和 hxllo 等。
    # KEYS h*llo 匹配 hllo 和 heeeeello 等。
    # KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo

expire(name ,time)

# 为某个redis的某个name设置超时时间

rename(src, dst)

# 对redis的name重命名为

move(name, db))

# 将redis的某个值移动到指定的db下

randomkey()

# 随机获取一个redis的name(不删除)

type(name)

# 获取name对应值的类型

scan(cursor=0, match=None, count=None)

scan_iter(match=None, count=None)

# 同字符串操作,用于增量迭代获取key

管道

redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作

import redis
 
pool = redis.ConnectionPool(host=‘10.0.0.111‘, port=6379)
 
r = redis.Redis(connection_pool=pool)
 
# pipe = r.pipeline(transaction=False)
pipe = r.pipeline(transaction=True)
 
pipe.set(‘name‘, ‘bar‘)
pipe.set(‘role‘, ‘deny‘)
 
pipe.execute()

发布与订阅

Demo

import redis
 
class RedisHelper:
 
    def __init__(self):
        self.__conn = redis.Redis(host=‘10.0.0.111‘, port=‘6379‘)
        self.chan_sub = ‘fm104.5‘
        self.chan_pub = ‘fm104.5‘
 
    def public(self, msg):
        self.__conn.publish(self.chan_pub, msg)
        return True
 
    def subscribe(self):
        pub = self.__conn.pubsub()
        pub.subscribe(self.chan_sub)
        pub.parse_response()
        return pub

订阅者

import s2
 
obj = s2.RedisHelper()
redis_sub = obj.subscribe()
 
while True:
    msg = redis_sub.parse_response()
    print(msg)

发布者

obj = s2.RedisHelper()
obj.public(‘hello‘)
时间: 2024-09-30 09:02:54

自动化运维Python系列之Memcache、Redis操作的相关文章

自动化运维Python系列之Django进阶操作

FBV && CBV FBV.CBV是Django视图路由处理模型,当用户请求送达路由系统URL后,由其转发给视图view来分析并处理 // FBV    function base views  // CBV    class base views 区别就是一个直接用函数驱动,一个用类驱动,两者在使用上存在一些区别 1)FBV URL中根据路由匹配直接转发给视图中的某一个处理函数 urlpatterns = [     url(r'^home/', views.home), ] 视图函数

自动化运维Python系列(一)之基础篇

Python介绍 Python是由创始人吉多·范罗苏姆(Guido van Rossum)在1989年圣诞节假期期间,为了打发时间,构思出来的一个新的脚本解释器.由于Guido在开发Python语言过程中,借鉴了很多ABC语言特性,所有后来包括Guido自己也那么认为,Python语言的前身就是ABC语言. Python是一门面向对象的.动态解释型强定义语言:Python崇尚简洁.优美.清晰,是一门优秀的被广泛使用的语言. 在2015年以前,最流行的Python版本还是2.4,但是由于Pytho

自动化运维Python系列之ForeignKey、relationship联表查询

一对多和多对多 数据库表结构设计是程序项目开发前的重要环节,后期数据库操作都是围绕着这个已经设计好的表结构进行,如果表结构设计有问题,整个程序项目就有存在需要整个推翻重构的风险... 数据库表结构除了简单的单表操作以外,还有一对多.多对多等. 一对多 基于SQLAlchemy我们可以先创建如下结构的2张表,然后来看看具体怎样通过外键ForeignKey或者relationship联表操作 创建表 from sqlalchemy.ext.declarative import declarative

自动化运维Python系列(七)之Socket编程

了解知识点TCP\IP 要想理解socket首先得熟悉一下TCP/IP协议族, TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制协议/网间协议,定义了主机如何连入因特网及数据如何再它们之间传输的标准, 从字面意思来看TCP/IP是TCP和IP协议的合称,但实际上TCP/IP协议是指因特网整个TCP/IP协议族.不同于ISO模型的七个分层,TCP/IP协议参考模型把所有的TCP/IP系列协议归类到四个抽象层中(数据链路层和物理

自动化运维Python系列之Django信号、缓存操作

Django信号 Django内部提供了一种"信号强度"处理机制,简单理解就是当Django在接收到请求后内部做某些特定操作前发出信号,提醒一些接受者或者做操作,这样的好处就是方便程序定制小功能插件,也是对本身框架的一种节藕操作 1)Django的内置信号 Model signals     pre_init                # django的modal执行其构造方法前,自动触发     post_init               # django的modal执行其构

自动化运维Python系列(四)之装饰器和生成器

装饰器 在理解什么事装饰器之前,我们需要理解:函数也是一个对象,可以赋值给变量,通过变量来调用 def f1():     print('2016') d = f1 d() 输出: 2016 那么装饰器的作用就是在不改变原函数的前提下,调用这些函数,并且为函数增加我们需要的新功能. 我们平时在编写好很多独立函数模块以后,突然需要在每个模块内添加一个功能,比如: def f1():     print('F1') def f2():     print('F2') def f3():     pr

自动化运维Python系列之消息队列RabbitMQ

RabbitMQ RabbitMQ是一个由erlang开发的AMQP(Advanced Message Queue )的开源实现.AMQP 的出现其实也是应了广大人民群众的需求,虽然在同步消息通讯的世界里有很多公开标准(如 COBAR的 IIOP ,或者是 SOAP 等),但是在异步消息处理中却不是这样,只有大企业有一些商业实现(如微软的 MSMQ ,IBM 的 Websphere MQ 等),因此,在 2006 年的 6 月,Cisco .Redhat.iMatix 等联合制定了 AMQP 的

自动化运维Python系列(六)之面向对象

面向对象编程 面向过程:根据业务逻辑从上到下垒代码 函数式:将某功能代码封装到函数中,以后直接调用,不需要再次编写 面向对象:对函数进行分类和封装,让开发"更快更好更强..." # 像Java和C#等编程语言仅支持面向对象编程,而Python支持函数式编程和面向对象编程混用 面向对象示例 # 函数式编程 def bar():     print('bar')   bar()  # 直接调用函数 # 面向对象编程 class Foo:  # 创建类        def bar(self

自动化运维Python系列(三)之基础函数和文件操作

函数作用 增强代码的重用性和可读性 在没有使用函数编程之前,我们可能一直遵循的都是面向过程编程,即根据业务逻辑从上到下实现各个功能,这样的做的坏处是代码可读性不强,大量冗余代码,而且执行效率不高:有了函数后,我们就可以将多次使用到的相同代码模块放在单独的函数定义中,在任何想要调用它的地方随时调用,这就叫做函数式编程. 面向对象编程其实就是对函数进行再分类和封装,让开发"更快更好更强..." 函数的定义 def 函数名(参数): ... 函数体 ... 返回值 函数的定义主要有如下要点: