Layer Normalization

Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv preprint arXiv:1607.06450 (2016).

Batch Normalization是对每个神经元做归一化(cnn是对每个feature map做归一化),主要是为了解决internal covariate shift的问题。

作者提出,对于RNN这种没法用mini-batch的网络,没办法用BN,所以提出了Layer Normalization。

公式为:

两个repo:https://github.com/pbhatia243/tf-layer-norm 和 https://github.com/ryankiros/layer-norm

感觉不管BN还是LN,都是为了限制神经元的输出值,使其符合一定的分布。可以看出,为了得到均值和方差,BN采用了不同batch中不同的输入数据来计,LN采用了同一层上神经元来计算。那么,是否可以通过历史时间数据来计算呢,感兴趣的同学可以自己去实现一个TN(time normalization或者叫temporal normalization ),似乎也是支持RNN的(即独立于mini-batch的)。

时间: 2024-10-25 22:33:17

Layer Normalization的相关文章

【算法】Normalization

Normalization(归一化) 写这一篇的原因是以前只知道一个Batch Normalization,自以为懂了.结果最近看文章,又发现一个Layer Normalization,一下就懵逼了.搞不懂这两者的区别.后来是不查不知道,一查吓一跳,Normalization的方法五花八门,Batch Normalization, Layer Normalization, Weight Normalization, Cosine Normalization, Instance Normaliza

常见的几种 Normalization 算法

神经网络中有各种归一化算法:Batch Normalization (BN).Layer Normalization (LN).Instance Normalization (IN).Group Normalization (GN).从公式看它们都差不多,如 (1) 所示:无非是减去均值,除以标准差,再施以线性映射. Batch Normalization Batch Normalization (BN) 是最早出现的,也通常是效果最好的归一化方式.feature map: 包含 N 个样本,每

(转) Written Memories: Understanding, Deriving and Extending the LSTM

R2RT Written Memories: Understanding, Deriving and Extending the LSTM Tue 26 July 2016 When I was first introduced to Long Short-Term Memory networks (LSTMs), it was hard to look past their complexity. I didn’t understand why they were designed they

卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Layers to Convolutional Layers ConvNet Architectures Layer Patterns Layer Sizing Patterns C

SSD Network Architecture Special Lyaers--keras version

"""Some special pupropse layers for SSD.""" import keras.backend as K from keras.engine.topology import InputSpec from keras.engine.topology import Layer import numpy as np import tensorflow as tf class Normalize(Layer): &quo

Geoffrey E. Hinton

https://www.cs.toronto.edu/~hinton/ Geoffrey E. Hinton I am an Engineering Fellow at Google where I manage Brain Team Toronto, which is a new part of the Google Brain Team and is located at Google's Toronto office at 111 Richmond Street. Brain Team T

2017年计算语义相似度最新论文,击败了siamese lstm,非监督学习

Page 1Published as a conference paper at ICLR 2017AS IMPLE BUT T OUGH - TO -B EAT B ASELINE FOR S EN -TENCE E MBEDDINGSSanjeev Arora, Yingyu Liang, Tengyu MaPrinceton University{arora,yingyul,tengyu}@cs.princeton.eduA BSTRACTThe success of neural net

“你什么意思”之基于RNN的语义槽填充(Pytorch实现)

1. 概况 1.1 任务 口语理解(Spoken Language Understanding, SLU)作为语音识别与自然语言处理之间的一个新兴领域,其目的是为了让计算机从用户的讲话中理解他们的意图.SLU是口语对话系统(Spoken Dialog Systems)的一个非常关键的环节.下图展示了口语对话系统的主要流程. SLU主要通过如下三个子任务来理解用户的语言: 领域识别(Domain Detection) 用户意图检测(User Intent Determination) 语义槽填充(

对Attention is all you need 的理解

https://blog.csdn.net/mijiaoxiaosan/article/details/73251443 本文参考的原始论文地址:https://arxiv.org/abs/1706.03762 谷歌昨天在arxiv发了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译.传统的神经机器翻译大都是利用RNN或者CNN来作为encoder-decoder的模型基础,而谷歌最新的只基于Atte