在上一篇,我们从使用方式和策略上,对消息队列做了一个宏观描述。从本篇开始,我们将深入到源码内部,仔细分析Kafka到底是如何实现一个分布式消息队列。我们的分析将从Producer端开始。
从Kafka 0.8.2开始,发布了一套新的Java版的client api, KafkaProducer/KafkaConsumer,替代之前的scala版的api。本系列的分析将只针对这套Java版的api。
多线程异步发送模型
下图是经过源码分析之后,整理出来的Producer端的架构图:
在上一篇我们讲过,Producer有同步发送和异步发送2种策略。在以前的Kafka client api实现中,同步和异步是分开实现的。而在0.9中,同步发送其实是通过异步发送间接实现,其接口如下:
public class KafkaProducer<K, V> implements Producer<K, V> {
...
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) //异步发送接口
{
...
}
}
要实现同步发送,只要在拿到返回的Future对象之后,直接调用get()就可以了。
基本思路
从上图我们可以看出,异步发送的基本思路就是:send的时候,KafkaProducer把消息放到本地的消息队列RecordAccumulator,然后一个后台线程Sender不断循环,把消息发给Kafka集群。
要实现这个,还得有一个前提条件:就是KafkaProducer/Sender都需要获取集群的配置信息Metadata。所谓Metadata,也就是在上一篇所讲的,Topic/Partion与broker的映射关系:每一个Topic的每一个Partion,得知道其对应的broker列表是什么,其中leader是谁,follower是谁。
2个数据流
所以在上图中,有2个数据流:
Metadata流(A1,A2,A3):Sender从集群获取信息,然后更新Metadata; KafkaProducer先读取Metadata,然后把消息放入队列。
消息流(B1, B2, B3):这个很好理解,不再详述。
本篇着重讲述Metadata流,消息流,将在后续详细讲述。
Metadata的线程安全性
从上图可以看出,Metadata是多个producer线程读,一个sender线程更新,因此它必须是线程安全的。
Kafka的官方文档上也有说明,KafkaProducer是线程安全的,可以在多线程中调用:
The producer is thread safe and sharing a single producer instance across threads will generally be faster than having multiple instances.
从下面代码也可以看出,它的所有public方法都是synchronized:
public final class Metadata {
。。。
public synchronized Cluster fetch() {
return this.cluster;
}
public synchronized long timeToNextUpdate(long nowMs) {
。。。
}
public synchronized int requestUpdate() {
。。。
}
。。。
}
Metadata的数据结构
下面代码列举了Metadata的主要数据结构:一个Cluster对象 + 1堆状态变量。前者记录了集群的配置信息,后者用于控制Metadata的更新策略。
public final class Metadata {
...
private final long refreshBackoffMs; //更新失败的情况下,下1次更新的补偿时间(这个变量在代码中意义不是太大)
private final long metadataExpireMs; //关键值:每隔多久,更新一次。缺省是600*1000,也就是10分种
private int version; //每更新成功1次,version递增1。这个变量主要用于在while循环,wait的时候,作为循环判断条件
private long lastRefreshMs; //上一次更新时间(也包含更新失败的情况)
private long lastSuccessfulRefreshMs; //上一次成功更新的时间(如果每次都成功的话,则2者相等。否则,lastSuccessulRefreshMs < lastRefreshMs)
private Cluster cluster; //集群配置信息
private boolean needUpdate; //是否强制刷新
、
...
}
public final class Cluster {
...
private final List<Node> nodes; //Node也就是Broker
private final Map<TopicPartition, PartitionInfo> partitionsByTopicPartition; //Topic/Partion和broker list的映射关系
private final Map<String, List<PartitionInfo>> partitionsByTopic;
private final Map<String, List<PartitionInfo>> availablePartitionsByTopic;
private final Map<Integer, List<PartitionInfo>> partitionsByNode;
private final Map<Integer, Node> nodesById;
}
public class PartitionInfo {
private final String topic;
private final int partition;
private final Node leader;
private final Node[] replicas;
private final Node[] inSyncReplicas;
}
producer读取Metadata
下面是send函数的源码,可以看到,在send之前,会先读取metadata。如果metadata读不到,会一直阻塞在那,直到超时,抛出TimeoutException
//KafkaProducer
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
try {
long waitedOnMetadataMs = waitOnMetadata(record.topic(), this.maxBlockTimeMs); //拿不到topic的配置信息,会一直阻塞在这,直到抛异常
... //拿到了,执行下面的send逻辑
} catch()
{}
}
//KafkaProducer
private long waitOnMetadata(String topic, long maxWaitMs) throws InterruptedException {
if (!this.metadata.containsTopic(topic))
this.metadata.add(topic);
if (metadata.fetch().partitionsForTopic(topic) != null)
return 0; //取到topic的配置信息,直接返回
long begin = time.milliseconds();
long remainingWaitMs = maxWaitMs;
while (metadata.fetch().partitionsForTopic(topic) == null) { //取不到topic的配置信息,一直死循环wait,直到超时,抛TimeoutException
log.trace("Requesting metadata update for topic {}.", topic);
int version = metadata.requestUpdate(); //把needUpdate置为true
sender.wakeup(); //唤起sender
metadata.awaitUpdate(version, remainingWaitMs); //metadata的关键函数
long elapsed = time.milliseconds() - begin;
if (elapsed >= maxWaitMs)
throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms.");
if (metadata.fetch().unauthorizedTopics().contains(topic))
throw new TopicAuthorizationException(topic);
remainingWaitMs = maxWaitMs - elapsed;
}
return time.milliseconds() - begin;
}
//Metadata
public synchronized void awaitUpdate(final int lastVersion, final long maxWaitMs) throws InterruptedException {
if (maxWaitMs < 0) {
throw new IllegalArgumentException("Max time to wait for metadata updates should not be < 0 milli seconds");
}
long begin = System.currentTimeMillis();
long remainingWaitMs = maxWaitMs;
while (this.version <= lastVersion) { //当Sender成功更新meatadata之后,version加1。否则会循环,一直wait
if (remainingWaitMs != 0
wait(remainingWaitMs); //线程的wait机制,wait和synchronized的配合使用
long elapsed = System.currentTimeMillis() - begin;
if (elapsed >= maxWaitMs) //wait时间超出了最长等待时间
throw new TimeoutException("Failed to update metadata after " + maxWaitMs + " ms.");
remainingWaitMs = maxWaitMs - elapsed;
}
}
总结:从上面代码可以看出,producer wait metadata的时候,有2个条件:
(1) while (metadata.fetch().partitionsForTopic(topic) == null)
(2)while (this.version <= lastVersion)
有wait就会有notify,notify在Sender更新Metadata的时候发出。
Sender更新Metadata
Sender的创建
下面是KafkaProducer的构造函数,从代码可以看出,Sender就是KafkaProducer中创建的一个Thread.
private KafkaProducer(ProducerConfig config, Serializer<K> keySerializer, Serializer<V> valueSerializer) {
try {
...
this.metadata = new Metadata(retryBackoffMs, config.getLong(ProducerConfig.METADATA_MAX_AGE_CONFIG)); //构造metadata
this.metadata.update(Cluster.bootstrap(addresses), time.milliseconds()); //往metadata中,填入初始的,配置的node列表
ChannelBuilder channelBuilder = ClientUtils.createChannelBuilder(config.values());
NetworkClient client = new NetworkClient(
new Selector(config.getLong(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG), this.metrics, time, "producer", metricTags, channelBuilder),
this.metadata,
clientId,
config.getInt(ProducerConfig.MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION),
config.getLong(ProducerConfig.RECONNECT_BACKOFF_MS_CONFIG),
config.getInt(ProducerConfig.SEND_BUFFER_CONFIG),
config.getInt(ProducerConfig.RECEIVE_BUFFER_CONFIG),
this.sender = new Sender(client, //构造一个sender。sender本身实现的是Runnable接口
this.metadata,
this.accumulator,
config.getInt(ProducerConfig.MAX_REQUEST_SIZE_CONFIG),
(short) parseAcks(config.getString(ProducerConfig.ACKS_CONFIG)),
config.getInt(ProducerConfig.RETRIES_CONFIG),
this.metrics,
new SystemTime(),
clientId,
this.requestTimeoutMs);
String ioThreadName = "kafka-producer-network-thread" + (clientId.length() > 0 ? " | " + clientId : "");
this.ioThread = new KafkaThread(ioThreadName, this.sender, true);
this.ioThread.start(); //一个线程,开启sender
Metadata的更新机制 – Sender的run方法
public void run() {
// main loop, runs until close is called
while (running) {
try {
run(time.milliseconds());
} catch (Exception e) {
log.error("Uncaught error in kafka producer I/O thread: ", e);
}
}
。。。
}
public void run(long now) {
Cluster cluster = metadata.fetch();
。。。
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now); //遍历消息队列中所有的消息,找出对应的,已经ready的Node
if (result.unknownLeadersExist) //如果一个ready的node都没有,请求更新metadata
this.metadata.requestUpdate();
。。。
//client的2个关键函数,一个发送ClientRequest,一个接收ClientResponse。底层调用的是NIO的poll。关于nio, 后面会详细介绍
for (ClientRequest request : requests)
client.send(request, now);
this.client.poll(pollTimeout, now);
}
//NetworkClient
public List<ClientResponse> poll(long timeout, long now) {
long metadataTimeout = metadataUpdater.maybeUpdate(now); //判断是否要更新metadata
try {
this.selector.poll(Utils.min(timeout, metadataTimeout, requestTimeoutMs));
} catch (IOException e) {
log.error("Unexpected error during I/O", e);
}
// process completed actions
long updatedNow = this.time.milliseconds();
List<ClientResponse> responses = new ArrayList<>();
handleCompletedSends(responses, updatedNow);
handleCompletedReceives(responses, updatedNow); //在返回的handler中,会处理metadata的更新
handleDisconnections(responses, updatedNow);
handleConnections();
handleTimedOutRequests(responses, updatedNow);
// invoke callbacks
for (ClientResponse response : responses) {
if (response.request().hasCallback()) {
try {
response.request().callback().onComplete(response);
} catch (Exception e) {
log.error("Uncaught error in request completion:", e);
}
}
}
return responses;
}
//DefaultMetadataUpdater
@Override
public long maybeUpdate(long now) {
// should we update our metadata?
long timeToNextMetadataUpdate = metadata.timeToNextUpdate(now);
long timeToNextReconnectAttempt = Math.max(this.lastNoNodeAvailableMs + metadata.refreshBackoff() - now, 0);
long waitForMetadataFetch = this.metadataFetchInProgress ? Integer.MAX_VALUE : 0;
// if there is no node available to connect, back off refreshing metadata
long metadataTimeout = Math.max(Math.max(timeToNextMetadataUpdate, timeToNextReconnectAttempt),
waitForMetadataFetch);
if (metadataTimeout == 0) {
// highly dependent on the behavior of leastLoadedNode.
Node node = leastLoadedNode(now); //找到负载最小的Node
maybeUpdate(now, node); //把更新Metadata的请求,发给这个Node
}
return metadataTimeout;
}
private void maybeUpdate(long now, Node node) {
if (node == null) {
log.debug("Give up sending metadata request since no node is available");
// mark the timestamp for no node available to connect
this.lastNoNodeAvailableMs = now;
return;
}
String nodeConnectionId = node.idString();
if (canSendRequest(nodeConnectionId)) {
Set<String> topics = metadata.needMetadataForAllTopics() ? new HashSet<String>() : metadata.topics();
this.metadataFetchInProgress = true;
ClientRequest metadataRequest = request(now, nodeConnectionId, topics); //关键点:发送更新Metadata的Request
log.debug("Sending metadata request {} to node {}", metadataRequest, node.id());
doSend(metadataRequest, now); //这里只是异步发送,返回的response在上面的handleCompletedReceives里面处理
} else if (connectionStates.canConnect(nodeConnectionId, now)) {
log.debug("Initialize connection to node {} for sending metadata request", node.id());
initiateConnect(node, now);
} else { // connected, but can‘t send more OR connecting
this.lastNoNodeAvailableMs = now;
}
}
private void handleCompletedReceives(List<ClientResponse> responses, long now) {
for (NetworkReceive receive : this.selector.completedReceives()) {
String source = receive.source();
ClientRequest req = inFlightRequests.completeNext(source);
ResponseHeader header = ResponseHeader.parse(receive.payload());
// Always expect the response version id to be the same as the request version id
short apiKey = req.request().header().apiKey();
short apiVer = req.request().header().apiVersion();
Struct body = (Struct) ProtoUtils.responseSchema(apiKey, apiVer).read(receive.payload());
correlate(req.request().header(), header);
if (!metadataUpdater.maybeHandleCompletedReceive(req, now, body))
responses.add(new ClientResponse(req, now, false, body));
}
}
@Override
public boolean maybeHandleCompletedReceive(ClientRequest req, long now, Struct body) {
short apiKey = req.request().header().apiKey();
if (apiKey == ApiKeys.METADATA.id && req.isInitiatedByNetworkClient()) {
handleResponse(req.request().header(), body, now);
return true;
}
return false;
}
//关键函数
private void handleResponse(RequestHeader header, Struct body, long now) {
this.metadataFetchInProgress = false;
MetadataResponse response = new MetadataResponse(body);
Cluster cluster = response.cluster(); //从response中,拿到一个新的cluster对象
if (response.errors().size() > 0) {
log.warn("Error while fetching metadata with correlation id {} : {}", header.correlationId(), response.errors());
}
if (cluster.nodes().size() > 0) {
this.metadata.update(cluster, now); //更新metadata,用新的cluster覆盖旧的cluster
} else {
log.trace("Ignoring empty metadata response with correlation id {}.", header.correlationId());
this.metadata.failedUpdate(now); //更新metadata失败,做失败处理逻辑
}
}
//更新成功,version+1, 同时更新其它字段
public synchronized void update(Cluster cluster, long now) {
this.needUpdate = false;
this.lastRefreshMs = now;
this.lastSuccessfulRefreshMs = now;
this.version += 1;
for (Listener listener: listeners)
listener.onMetadataUpdate(cluster); //如果有人监听了metadata的更新,通知他们
this.cluster = this.needMetadataForAllTopics ? getClusterForCurrentTopics(cluster) : cluster; //新的cluster覆盖旧的cluster
notifyAll(); //通知所有的阻塞的producer线程
log.debug("Updated cluster metadata version {} to {}", this.version, this.cluster);
}
//更新失败,只更新lastRefreshMs
public synchronized void failedUpdate(long now) {
this.lastRefreshMs = now;
}
总结
最后做一个总结:
(1) Metadata的更新,是在while循环,每次调用client.poll()的时候更新的。在这个while循环中,通过记录当前时间,来实现各种超时机制。
(2) 更新机制有2个:
机制1:每隔一段时间更新一次,这个通过 Metadata的lastRefreshMs, lastSuccessfulRefreshMs 这2个字段来实现
机制2:强制更新, 通过Metadata的needUpdate字段来实现。 requestUpdate()函数里面其实什么都没做,就是把needUpdate置成了false
每次poll的时候,都检查这2个条件,达到了,就触发更新
(3) 更新请求MetadataRequest是nio异步发送的,在poll的返回中,处理MetadataResponse的时候,才真正更新Metadata。
这里有个关键点:Metadata的cluster对象,每次是整个覆盖的,而不是局部更新。所以cluster内部不用加锁。
(4) 更新的时候,是从metadata保存的所有Node,或者说Broker中,选负载最小的那个,也就是当前接收请求最少的那个。向其发送MetadataRequest请求,获取新的Cluster对象。