bzoj 4403 序列统计

4403: 序列统计

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 858  Solved: 413
[Submit][Status][Discuss]

Description

给定三个正整数N、L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量。输出答案对10^6+3取模的结果。

Input

输入第一行包含一个整数T,表示数据组数。

第2到第T+1行每行包含三个整数N、L和R,N、L和R的意义如题所述。

1≤N,L,R≤10^9,1≤T≤100,输入数据保证L≤R。

Output

输出包含T行,每行有一个数字,表示你所求出的答案对10^6+3取模的结果。

Sample Input

2
1 4 5
2 4 5

Sample Output

2
5
//【样例说明】满足条件的2个序列为[4]和[5]。

HINT

Source

By yts1999

令M=r-l+1

根据多重集合的组合公式

ans= Σ C(M-1,i+M-1)  i∈[1,n]

然后 通过公式

C(M,M-1)=C(M+1,M)-1

C(M,N)= C(M-1,N)+ C(M-1,N-1)

可 化简 得 ans= C(M+N,M)-1

#include<cstdio>
using namespace std;
typedef long long LL;
const int p=1e6+3;
LL f[p+1];
void pre()
{
    f[0]=1;
    for(int i=1;i<=p;i++) f[i]=f[i-1]*i%p;
}
int pow(LL a,int b)
{
    LL r=1;
    while(b)
    {
        if(b&1) r*=a,r%=p;
        b>>=1; a*=a; a%=p;
    }
    return r;
}
int C(int n,int m)
{
    if(m>n) return 0;
    return f[n]*pow(f[m]*f[n-m]%p,p-2)%p;
}
int Lucas(int n,int m)
{
    LL ans=1;
    for(;m;n/=p,m/=p) ans=ans*C(n%p,m%p)%p;
    return ans;
}
int main()
{
    int T,n,l,r;
    pre();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&l,&r);
        printf("%d\n",(Lucas(r-l+1+n,r-l+1)-1+p)%p);
    }
}
时间: 2024-10-01 04:57:28

bzoj 4403 序列统计的相关文章

bzoj 4403 序列统计 卢卡斯定理

4403:序列统计 Time Limit: 3 Sec  Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T行,每行有一个数字,表示你所求出的答案对106+3取模的结果. Sample Input 2 1 4

【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)

4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数.第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. Output 输出包含T行,每行有一个数字,表示你所求出的答案对106+3

[Lucas定理][组合] Bzoj P4403 序列统计

Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. 题解 我们要求长度为n的元素在[1..r-l+1]中的单调不下降序列的数量 考虑将第i个元素加上i-1,那么每个合法序列就会对应一个长度为n,元素为[1..n+m-1]中的单调递增的序列数量 显然两者是一一对应的,那么就只用统计后面的贡献 那么就是在n+m-1个元素中选n个,就是C(n+m-1,n) 所以答案就是C(m,n+m)-1,然后用luc

BZOJ-4403: 序列统计 (Lucas+排列组合)

4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1021  Solved: 477[Submit][Status][Discuss] Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组数. 第2到第T+1行每行包含三个整数N.L和R,N.L和R的意义如题所述. 1≤N,L,R≤10

BZOJ 3992 【SDOI2015】 序列统计

题目链接:序列统计 我来复习板子了--这道题也是我写的第一发求原根啊? 求原根方法: 从小到大依次枚举原根.设当前枚举的原根为\(x\),模数为\(p\),\(p-1\)的质因数分别为\(p_1,p_2,\dots,p_m\),则只需检验\(x^{\frac{p}{p_i}}\equiv1 \pmod{p}\)是否成立即可.如果成立则\(x\)不是原根. 然后这道题朴素\(dp\)就不讲了.设\(m\)的原根为\(g\),那么把每个数表示成\(g^k\)的形式就可以乘法变加法了,就成为了\(NT

BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中

BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Status][Discuss] Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中

BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列.但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个.小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi.另外,小C认为这个问题的答案可能很大,因

不要搜索,出栈序列统计

1627: 出栈序列统计 时间限制: 1 Sec  内存限制: 128 MB 题目描述 栈是常用的一种数据结构,有n令元素在栈顶端一侧等待进栈,栈顶端另一侧是出栈序列.你已经知道栈的操作有两·种:push和pop,前者是将一个元素进栈,后者是将栈顶元素弹出.现在要使用这两种操作,由一个操作序列可以得到一系列的输出序列.请你编程求出对于给定的n,计算并输出由操作数序列1,2,-,n,经过一系列操作可能得到的输出序列总数. 输入 一个整数n(1<=n<=15) 输出 一个整数,即可能输出序列的总数