bzoj 1101 zap 莫比乌斯

1101: [POI2007]Zap

Time Limit: 10 Sec  Memory Limit: 162 MB

Description

  FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a
,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

  第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个
正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

  对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2
//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(
6,3),(3,3)。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define esp 0.00000000001
#define pi 4*atan(1)
const int N=1e5+10,M=1e7+10,inf=1e9+10,mod=1e9+7;
int mu[N], p[N], np[N], cnt, sum[N];
void init() {
    mu[1]=1;
    for(int i=2; i<N; ++i) {
        if(!np[i]) p[++cnt]=i, mu[i]=-1;
        for(int j=1; j<=cnt && i*p[j]<N; ++j) {
            int t=i*p[j];
            np[t]=1;
            if(i%p[j]==0) { mu[t]=0; break; }
            mu[t]=-mu[i];
        }
    }
    for(int i=1;i<N;i++)
    sum[i]=sum[i-1]+mu[i];
}
ll getans(int b,int d)
{
    ll ans=0;
    for(int L=1,R=0;L<=b;L=R+1)
    {
        R=min(b/(b/L),d/(d/L));
        ans+=(ll)(sum[R]-sum[L-1])*(b/L)*(d/L);
    }
    return ans;
}
int main()
{
    int T;
    init();
    scanf("%d",&T);
    while(T--)
    {
        int b,d,k;
        scanf("%d%d%d",&b,&d,&k);
        if(b>d)swap(b,d);
        ll ans=0;
        printf("%lld\n",getans(b/k,d/k));
    }
    return 0;
}
时间: 2024-10-11 21:47:47

bzoj 1101 zap 莫比乌斯的相关文章

bzoj 1101 Zap —— 莫比乌斯反演

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 直接莫比乌斯反演. 代码如下: #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long long ll; int const xn=5e5+5; int pri[xn],cnt,mu[xn]; bool vis[xn]; int rd()

BZOJ 1101 Zap(莫比乌斯反演)

http://www.lydsy.com/JudgeOnline/problem.php?id=1101 给定a,b,d,求有多少gcd(x,y)==d(1<=x<=a&&1<=y<=b) 思路: Σgcd(x,y)==d  (1<=x<=a,1<=y<=b) = Σgcd(x,y)==1 (1<=x<=a/d,1<=y<=b/d) 令G(i)=num(i|gcd(x,y))=n/i*m/i g(i)=num(i=gc

BZOJ 1101 Zap

莫比乌斯反演裸题. #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #define maxn 50050 using namespace std; int n,a,b,d,pre[maxn],miu[maxn],prime[maxn],cnt=0; bool vis[maxn]; void make_table() { miu[1]=1; for (int i=2;i

bzoj [SDOI2014]数表 莫比乌斯反演 BIT

bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[gcd(i,j)]<=a] \] \[ f[]可以O(n)预处理出来 \] \[ \sum\limits_{k=1}^{n}f[k]*\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{m}[gcd(i,j)==k] \] \[ \sum\limits_{k=1}^{n}

bzoj 1101 [POI2007]Zap - 莫比乌斯反演

Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个 正整数,分别为a,b,d.(1<=d<=a,b<=50000) Output 对于每组询问,输出到输出文件zap.out一个正

BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n][1,m]里gcd=k 等价于[1,n/k][1,m/k]里gcd=1 考虑求[1,n][1,m]里gcd=1 结果为sum(miu[d]*(n/d)*(m/d)) 预处理O(n^1.5) 由于n/d只有sqrt(n)种取值,所以可以预处理出miu[]的前缀和 询问时分段求和 [代码] #incl

bzoj 1101: [POI2007]Zap

裸的莫比乌斯反演 1 #include<bits/stdc++.h> 2 #define N 100005 3 #define M 10000005 4 #define LL long long 5 #define inf 0x3f3f3f3f 6 using namespace std; 7 inline int ra() 8 { 9 int x=0,f=1; char ch=getchar(); 10 while (ch<'0' || ch>'9') {if (ch=='-')

bzoj 1101 莫比乌斯反演

最裸的莫比乌斯 #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int, int> using namespace std; const int N = 1e5 + 7; const int M = 1e6 + 7; const int inf = 0x3f3f3f3f; const LL INF

BZOJ 1101([POI2007]Zap-满足x&lt;=a&amp;&amp;y&lt;=b&amp;&amp;gcd(x,y)=d的数对个数)

1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1646  Solved: 577 [Submit][Status][Discuss] Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(