度序列:若把图G所有顶点的度排成一个序列s,则称s为图G的度序列
序列是可图的:一个非负整数组成的有限序列,
如果是某个无向图的度序列,则称该序列是可图的可图的
判断一个序列是否是可图的,可以用 Havel-Hakimi定理
Havel-Hakimi定理:由非负整数组成的非递增序列
s:d[1],d[2],d[3],...,d[n](n>=2,d1>=1)是可图的,
当且仅当s1:d[2]-1,d[3]-1,...,d[d1+1]-1,d[d1+2] ...d[n] 是可图的.
序列s1中有n-1个非负整数,s序列中d[1]后的前d[1]个度
(即d[1]-d[d1+1])依次减一,构成s1中的前d1个数
如:判断序列s:7,7,4,3,3,3,2,1是否可图
先删除s的首项7,对其后的7项每项减一
--> 6 3 2 2 2 1 0继续重复此步骤
--> 2 1 1 1 0 -1,到这一步出现了负数,
由于图中不可能出现负度数的顶点,因此该序列不可图
判断任意一个序列是否可图的具体过程:
(1)先将序列由大到小排序
(2)设最大的度数为 t ,将最大项删除,然后把最大度数后的 t 个度数分别减1
(实质是把度数最大的点与后几个点连边)
(3)重复上述两步,如果序列中出现了负数,则不可图,如果序列全部变为0,则可图。
时间: 2024-10-10 01:35:49