[ACM] hdu 1217 Arbitrage (bellman_ford最短路,判断是否有正权回路或Floyed)

Arbitrage

Problem Description

Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French
franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

Input

The input file will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear.
The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency.
Exchanges which do not appear in the table are impossible.

Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".

Sample Input

3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar

3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar

0

Sample Output

Case 1: Yes
Case 2: No

Source

University of Ulm Local Contest 1996

解题思路:

方法1:

一种货币经过兑换其它的货币,经过几轮兑换,最终回到该货币,使其价值变大,这就是“套利”。采用bellman_ford算法,不是求对短路,求最大获利,在bellman算法上改动。判断是否含有正权回路。

代码:

#include <iostream>
#include <string.h>
using namespace std;
const int maxn=35;
double dis[maxn];
string str[maxn];
int nodeNum,edgeNum;

struct Edge
{
    int s,e;
    double w;
}edge[maxn*maxn];

bool bellman_ford(int start)
{
    for(int i=1;i<=nodeNum;i++)
        dis[i]=0;//改动1
    dis[start]=1;
    bool ok;
    for(int i=1;i<=nodeNum-1;i++)
    {
        ok=0;
        for(int j=1;j<=edgeNum;j++)
        {
            if(dis[edge[j].s]*edge[j].w>dis[edge[j].e])//改动2
            {
                dis[edge[j].e]=dis[edge[j].s]*edge[j].w;
                ok=1;
            }
        }
        if(!ok)
            break;
    }
    for(int i=1;i<=edgeNum;i++)
        if(dis[edge[i].s]*edge[i].w>dis[edge[i].e])
        return true;
    return false;
}

int main()
{
    int c=1;
    while(cin>>nodeNum&&nodeNum)
    {
        for(int i=1;i<=nodeNum;i++)
            cin>>str[i];
        cin>>edgeNum;
        string from,to;
        double w;
        for(int i=1;i<=edgeNum;i++)
        {
            cin>>from>>w>>to;
            int j,k;
            for(j=1;j<=nodeNum;j++)
                if(from==str[j])
                break;
            for(k=1;k<=nodeNum;k++)
                if(to==str[k])
                break;
            edge[i].s=j;
            edge[i].e=k;
            edge[i].w=w;
        }
        if(bellman_ford(1))
            cout<<"Case "<<c++<<": Yes"<<endl;
        else
            cout<<"Case "<<c++<<": No"<<endl;
    }
    return 0;
}

方法二:

建立图,邻接矩阵,求任意两条边之间的最短路,如果dis[i][i]>1 的话,说明存在正权回路。代码中使用到了map, 字符串到整型编号的映射

代码:

#include <iostream>
#include <map>
#include <string.h>
using namespace std;
const int maxn=40;
string str[maxn];
double mp[maxn][maxn];
int nodeNum,edgeNum;

void floyed()
{
    for(int k=1;k<=nodeNum;k++)
        for(int i=1;i<=nodeNum;i++)
            for(int j=1;j<=nodeNum;j++)
            {
                if(mp[i][j]<mp[i][k]*mp[k][j])
                    mp[i][j]=mp[i][k]*mp[k][j];
            }
}

int main()
{
    int c=1;
    while(cin>>nodeNum&&nodeNum)
    {
        map<string,int>st;
        for(int i=1;i<=nodeNum;i++)
        {
            cin>>str[i];
            st[str[i]]=i;
        }
        for(int i=1;i<=nodeNum;i++)
            for(int j=1;j<=nodeNum;j++)
        {
            if(i==j)
                mp[i][j]=1;
            else
                mp[i][j]=0;
        }
        cin>>edgeNum;
        string from,to;double w;
        for(int i=1;i<=edgeNum;i++)
        {
            cin>>from>>w>>to;
            mp[st[from]][st[to]]=w;
        }
        floyed();
        bool ok=0;
        for(int i=1;i<=nodeNum;i++)
            if(mp[i][i]>1)
             ok=1;
        if(ok)
            cout<<"Case "<<c++<<": Yes"<<endl;
        else
            cout<<"Case "<<c++<<": No"<<endl;
    }
    return 0;
}

[ACM] hdu 1217 Arbitrage (bellman_ford最短路,判断是否有正权回路或Floyed)

时间: 2024-10-07 04:50:27

[ACM] hdu 1217 Arbitrage (bellman_ford最短路,判断是否有正权回路或Floyed)的相关文章

[ACM] hdu 1217 Arbitrage (bellman_ford最短路,推断是否有正权回路或Floyed)

Arbitrage Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British p

杭电 ACM HDU 1217 Arbitrage(最短路 floyd算法)

Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5272    Accepted Submission(s): 2418 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform

[ACM] POJ 3259 Wormholes (bellman-ford最短路径,判断是否存在负权回路)

Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29971   Accepted: 10844 Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way p

图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 7114 Description Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and pe

HDU 1217 Arbitrage 【最短路,map+spfa】

Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6985    Accepted Submission(s): 3212 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform

hdu 1217 Arbitrage (spfa算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1217 题目大意:通过货币的转换,来判断是否获利,如果获利则输出Yes,否则输出No. 这里介绍一个STL中的map容器去处理数据,map<string,int>V,M; 现在我目前的理解是将字符串转换成数字,然后就是根据spfa的模板找最短路了..哇哈哈( ⊙o⊙ )哇 1 #include <iostream> 2 #include <cstdio> 3 #include

hdu 1217 Arbitrage Floyd||SPFA

转载请注明出处:http://acm.hdu.edu.cn/showproblem.php?pid=1217 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1

HDU 1217 Arbitrage(Bellman-Ford判断负环+Floyd)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1217 题目大意:问你是否可以通过转换货币从中获利 如下面这组样例: USDollar 0.5 BritishPound BritishPound 10.0 FrenchFranc FrenchFranc 0.21 USDollar 可以通过US->Br->French->US这样转换,把1美元变成1*0.5*10*0.21=1.05美元赚取%5的利润. 解题思路:其实就相当于bellman-

hdu 1217 Arbitrage(佛洛依德)

Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6360    Accepted Submission(s): 2939 Problem Description Arbitrage is the use of discrepancies in currency exchange rates to transform o