Floyd算法(一)之 C语言详解

本章介绍弗洛伊德算法。和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现。后续再分别给出C++和Java版本的实现。

目录

1. 弗洛伊德算法介绍

2. 弗洛伊德算法图解
3. 弗洛伊德算法的代码说明
4. 弗洛伊德算法的源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列
目录

弗洛伊德算法介绍

和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

基本思想

通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。
接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" >
"a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。
同理,第k次更新时,如果"a[i][j]的距离" >
"a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

弗洛伊德算法图解

以上图G4为例,来对弗洛伊德进行算法演示。

初始状态:S是记录各个顶点间最短路径的矩阵。

第1步:初始化S。

    矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。

    注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

第2步:以顶点A(第1个顶点)为中介点,若a[i][j]
> a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。

    以顶点a[1]6,上一步操作之后,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。

同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。

弗洛伊德算法的代码说明

以"邻接矩阵"为例对弗洛伊德算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。

1.
基本定义


// 邻接矩阵
typedef struct _graph
{
char vexs[MAX]; // 顶点集合
int vexnum; // 顶点数
int edgnum; // 边数
int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;

Graph是邻接矩阵对应的结构体。

vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

2.
弗洛伊德算法


/*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* G -- 图
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
void floyd(Graph G, int path[][MAX], int dist[][MAX])
{
int i,j,k;
int tmp;

// 初始化
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
dist[i][j] = G.matrix[i][j]; // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
}

// 计算最短路径
for (k = 0; k < G.vexnum; k++)
{
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp)
{
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
}

// 打印floyd最短路径的结果
printf("floyd: \n");
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
printf("%2d ", dist[i][j]);
printf("\n");
}
}

弗洛伊德算法的源码


这里分别给出"邻接矩阵图"和"邻接表图"的弗洛伊德算法源码。

1. 邻接矩阵源码(matrix_udg.c)

2. 邻接表源码(list_udg.c)

时间: 2024-09-30 08:56:41

Floyd算法(一)之 C语言详解的相关文章

Prim算法(一)之 C语言详解

本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 普里姆算法介绍 普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所

Dijkstra算法(一)之 C语言详解

本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路

Kruskal算法(一)之 C语言详解

最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树. 克鲁斯卡尔算法介绍 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法. 基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路. 具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生

算法导论学习---红黑树详解之插入(C语言实现)

前面我们学习二叉搜索树的时候发现在一些情况下其高度不是很均匀,甚至有时候会退化成一条长链,所以我们引用一些"平衡"的二叉搜索树.红黑树就是一种"平衡"的二叉搜索树,它通过在每个结点附加颜色位和路径上的一些约束条件可以保证在最坏的情况下基本动态集合操作的时间复杂度为O(nlgn).下面会总结红黑树的性质,然后分析红黑树的插入操作,并给出一份完整代码. 先给出红黑树的结点定义: #define RED 1 #define BLACK 0 ///红黑树结点定义,与普通的二

邻接表无向图(一)之 C语言详解

本章介绍邻接表无向图.在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了.和以往一样,本文会先给出C语言的实现:后续再分别给出C++和Java版本的实现.实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若文章有错误或不足的地方,请不吝指出! 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法

哈夫曼树(一)之 C语言详解

本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若文章有错误或不足的地方,请帮忙指出! 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman

原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)

一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统,所以推荐使用Mou,本人使用 Win7 系统所以想写一篇 sublime text2 的版本

机器学习Spark Mllib算法源码及实战详解进阶与提高视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

算法的时间复杂度和空间复杂度详解

通常,对于一个给定的算法,我们要做 两项分析.第一是从数学上证明算法的正确性,这一步主要用到形式化证明的方法及相关推理模式,如循环不变式.数学归纳法等.而在证明算法是正确的基础上,第二部就是分析算法的时间复杂度.算法的时间复杂度反映了程序执行时间随输入规模增长而增长的量级,在很大程度上能很好反映出算法的优劣与否.因此,作为程序员,掌握基本的算法时间复杂度分析方法是很有必要的.       算法执行时间需通过依据该算法编制的程序在计算机上运行时所消耗的时间来度量.而度量一个程序的执行时间通常有两种