poj 3009 DFS +回溯

Curling 2.0

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 14567   Accepted: 6082

Description

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game
is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed
until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.

Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).

      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.

Fig. 2: Stone movements

Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.

With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).

Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board

First row of the board

...

h-th row of the board

The width and the height of the board satisfy: 2 <= w <= 20, 1 <=
h
<= 20.

Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.

0 vacant square
1 block
2 start position
3 goal position

The dataset for Fig. D-1 is as follows:

6 6

1 0 0 2 1 0

1 1 0 0 0 0

0 0 0 0 0 3

0 0 0 0 0 0

1 0 0 0 0 1

0 1 1 1 1 1

Output

For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1

Source

Japan 2006 Domestic

就是要求把一个冰壶从起点“2”用最少的步数移动到终点“3”

其中0为移动区域,1为石头区域,冰壶一旦向着某个方向运动就不会停止,也不会改变方向(想想冰壶在冰上滑动),除非冰壶撞到石头1 或者 到达终点 3

(1)所谓的“走一步”,就是指冰壶从一个静止状态到下一个静止状态,就是说冰壶在运动时经过的“格数”不视作“步数”,也就是说冰壶每次移动的距离都是不定的。

(2)还有就是由于石头会因为冰壶的碰撞而消失,因此冰壶每“走一步”,场地的环境就会改变一次。   (需要回溯)

(3)基于(2),可以发现本题虽然是要找 “最短路”,但是BFS几乎不可能,因为每“走一步”,场地的状态就要改变一次;而如果该步不满足要求,又要求把场地的状态还原到前一步,这只有DFS能做到。

(4)基于(3),DFS不是BFS,不能简单地用它来找最短路,必须要把所有可能的路一一找出来,再逐一比较它们的步数才能确定最短

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
int n,m,lx,ly;
int num=0x3f3f3f3f;
int dx[]= {1,0,-1,0};
int dy[]= {0,1,0,-1};
int a[30][30];
int vis[30][30];
int Judge(int x,int y)
{
    if(x<=n&&x>0&&y<=m&&y>0)
        return 1;
    return 0;
}
int DFS(int x,int y,int ans)
{
    if(!Judge(x,y)||(ans>10))
        return 0;
    if(a[x][y]==3)
    {
        if(ans<num)
            num=ans;
        return 0;
    }
    for(int i=0; i<4; i++)   //四个方向
    {
        for(int j=1; j<=20; j++)  //一直沿着一个方向走
        {
            int fx=j*dx[i]+x;
            int fy=j*dy[i]+y;
            if(!Judge(fx,fy))
                break;
            if(a[fx][fy]==3)      //遇到终点
            {
                if(ans+1<num)
				 num=ans+1;
                return 0;
            }
            if(a[fx][fy]==1)      //遇到障碍
            {
                int ffx=fx,ffy=fy;
                fx=(j-1)*dx[i]+x;
                fy=(j-1)*dy[i]+y;
                if(fx!=x||fy!=y)   //不是起点
                {
                    a[ffx][ffy]=0;
                    DFS(fx,fy,ans+1);
                    a[ffx][ffy]=1;     //回溯
                }
                break;
            }
        }
    }
}
int main()
{
    while(~scanf("%d%d",&m,&n))
    {
    	num=INF;
        if(!n&&!m) break;
        for(int i=1; i<=n; i++)
            for(int j=1; j<=m; j++)
            {
                scanf("%d",&a[i][j]);
                if(a[i][j]==2)
                {
                    lx=i;
                    ly=j;
                }
            }
        DFS(lx,ly,0);
        if(num<=10)
        printf("%d\n",num);
        else
		printf("-1\n");
    }
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-21 20:50:05

poj 3009 DFS +回溯的相关文章

poj 3009 dfs

背景:dfs,再加点模拟,各种代码疏漏错误wa了三次!!也有变量名使用不规则照成的.比如临时变量我我就应该用temp,buffer,key,三个变量名来表示. 思路:每一个点四个方向的dfs,到达终点就判断最少步数. bfs的思路:这个是经典的最短路问题,但是缺点是,地图会改变而bfs没办法像dfs那样容易回溯,方法就是把地图直接放在每一个坐标上,也就是定义一个结构体: struct place{ int x,y,step; int diagram[M][M];//每一个坐标点都付一个图 } 我

poj1321——dfs回溯

POJ 1321  DFS回溯+递归枚举 棋盘问题 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24813   Accepted: 12261 Description 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C. Input 输入含有多组测试数据. 每组数据的第一行

POJ 1979 POJ 3009 AOJ 0033 AOJ 0118 [搜索类题目][0033贪心模拟]

/** POJ 1979 BFS */ #include <stdio.h> #include <string.h> #include <iostream> #include <queue> using namespace std; const int N = 20 + 5; int mp[N][N]; int sx,sy; int n, m; int vis[3000]; int dirx[] = {0, 1, 0, -1}; int diry[] = {

poj 3009 Curling 2.0 (dfs)

id=3009">链接:poj 3009 题意:在一个冰面网格板上,有空白处(无障碍),和障碍块.有一个小石头,给定其起点和终点.求从起点到终点的最小步数 规则:小石头不能在障碍区运动,一旦从某一方向開始运动,不会改变方向,也不会停止.除非碰到障碍物或到达终点才会停止,这为一步.若碰到障碍物.小石头将停在障碍物的旁边,被碰到的一个障碍物将消失. 输入:1代表障碍物(不可到达),0代表空白区,2,代表起点.3代表终点 输出:若小石头能到达终点,且步数最多为十步,输出最小步数,否则输出-1.

poj 3009 Curling 2.0 【DFS】

题意:从2出发,要到达3, 0可以通过,碰到1要停止,并且1处要变成0, 并且从起点开始沿着一个方向要一直前进,直至碰到1(或者3)处才能停止,(就是反射来反射去知道反射经过3).如果反射10次还不能到达3,就输出-1. 策略:深搜. 易错点,方向不容易掌握,并且,出题人把n, m顺序反了. 代码: #include<stdio.h> #include<string.h> int map[25][25]; int ans, n, m; const int dir[4][2] = {

POJ 2907 Collecting Beepers (DFS+回溯)

Description Karel is a robot who lives in a rectangular coordinate system where each place is designated by a set of integer coordinates (x and y). Your job is to design a program that will help Karel pick up a number of beepers that are placed in he

poj 3009 Curling 2.0 深搜

http://poj.org/problem?id=3009 题意:一个小球在一个格子里滑行,当你给它一个力时,他会一直滑,直到前方碰到一个雪球停止,这时前方的雪球会消失,你继续给该小球任意一个方向的力...问至少需要几步才能到达到终点. 分析: 一般在求  最短路    时会用到   广搜,但是  本题  在搜索时, 每走一步, 现场状态是需要改变的 ,如果该步不满足,又需要把现场状态还原回去  ,这样   深搜  才能满足 因此用  深搜     只能把   所有能到达终点的路的步数    

POJ2488-A Knight&#39;s Journey(DFS+回溯)

题目链接:http://poj.org/problem?id=2488 A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 36695   Accepted: 12462 Description Background The knight is getting bored of seeing the same black and white squares again and again

poj1011 Sticks DFS+回溯

转载请注明出处:http://blog.csdn.net/u012860063 题目链接:http://poj.org/problem?id=1011 Description George took sticks of the same length and cut them randomly until all parts became at most 50 units long. Now he wants to return sticks to the original state, but