(转) 白话经典算法系列之三 希尔排序的实现(附源代码实现)

链接:http://blog.csdn.net/morewindows/article/details/6668714

希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。

该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。因为直接插入排序在元素基本有序的情况下(接近最好情况),效率是很高的,因此希尔排序在时间效率上比前两种方法有较大提高。

以n=10的一个数组49, 38, 65, 97, 26, 13, 27, 49, 55, 4为例

第一次 gap = 10 / 2 = 5

49   38   65   97   26   13   27   49   55   4

1A                                        1B

2A                                         2B

3A                                         3B

4A                                          4B

5A                                         5B

1A,1B,2A,2B等为分组标记,数字相同的表示在同一组,大写字母表示是该组的第几个元素, 每次对同一组的数据进行直接插入排序。即分成了五组(49, 13) (38, 27) (65, 49)  (97, 55)  (26, 4)这样每组排序后就变成了(13, 49)  (27, 38)  (49, 65)  (55, 97)  (4, 26),下同。

第二次 gap = 5 / 2 = 3

排序后

13   27   49   55   4    49   38   65   97   26

1A             1B             1C              1D            1E

2A               2B             2C             2D              2E

第三次 gap = 3 / 2 = 1

4   26   13   27   38    49   49   55   97   65

1A   1B     1C    1D    1E      1F     1G    1H     1I     1J

第四次 gap = 1 / 2 = 0 排序完成得到数组:

4   13   26   27   38    49   49   55   65   97

下面给出严格按照定义来写的希尔排序

void shellsort1(int a[], int n)
{
    int i, j, gap;

    for (gap = n / 2; gap > 0; gap /= 2) //步长
        for (i = 0; i < gap; i++)        //直接插入排序
        {
            for (j = i + gap; j < n; j += gap)
                if (a[j] < a[j - gap])
                {
                    int temp = a[j];
                    int k = j - gap;
                    while (k >= 0 && a[k] > temp)
                    {
                        a[k + gap] = a[k];
                        k -= gap;
                    }
                    a[k + gap] = temp;
                }
        }
}

很明显,上面的shellsort1代码虽然对直观的理解希尔排序有帮助,但代码量太大了,不够简洁清晰。因此进行下改进和优化,以第二次排序为例,原来是每次从1A到1E,从2A到2E,可以改成从1B开始,先和1A比较,然后取2B与2A比较,再取1C与前面自己组内的数据比较…….。这种每次从数组第gap个元素开始,每个元素与自己组内的数据进行直接插入排序显然也是正确的。

void shellsort2(int a[], int n)
{
    int j, gap;

    for (gap = n / 2; gap > 0; gap /= 2)
        for (j = gap; j < n; j++)//从数组第gap个元素开始
            if (a[j] < a[j - gap])//每个元素与自己组内的数据进行直接插入排序
            {
                int temp = a[j];
                int k = j - gap;
                while (k >= 0 && a[k] > temp)
                {
                    a[k + gap] = a[k];
                    k -= gap;
                }
                a[k + gap] = temp;
            }
}

再将直接插入排序部分用 白话经典算法系列之二 直接插入排序的三种实现  中直接插入排序的第三种方法来改写下:

void shellsort3(int a[], int n)
{
    int i, j, gap;

    for (gap = n / 2; gap > 0; gap /= 2)
        for (i = gap; i < n; i++)
            for (j = i - gap; j >= 0 && a[j] > a[j + gap]; j -= gap)
                Swap(a[j], a[j + gap]);
}

这样代码就变得非常简洁了。

附注:上面希尔排序的步长选择都是从n/2开始,每次再减半,直到最后为1。其实也可以有另外的更高效的步长选择,如果读者有兴趣了解,请参阅维基百科上对希尔排序步长的说明:http://zh.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E6%8E%92%E5%BA%8F

补充步长选择:

已知的最好步长串行是由Sedgewick提出的 (1, 5, 19, 41, 109,...),该串行的项来自 9 * 4^i - 9 * 2^i + 1 和 4^i - 3 * 2^i + 1 这两个算式[1].这项研究也表明“比较在希尔排序中是最主要的操作,而不是交换。”用这样步长串行的希尔排序比插入排序堆排序都要快,甚至在小数组中比快速排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢。

另一个在大数组中表现优异的步长串行是(斐波那契数列除去0和1将剩余的数以黄金分区比的两倍的进行运算得到的数列):(1, 9, 34, 182, 836, 4025, 19001, 90358, 428481, 2034035, 9651787, 45806244, 217378076, 1031612713, …)[2]

补充下复杂度情况:

步长串行 最坏情况下复杂度

(摘自维基百科)

说明:

  为了让更多的人看得懂,我补充图形如下,参考:http://blog.163.com/pinbo_jiankun/blog/static/133546488201391832348289/

http://hi.baidu.com/gsgaoshuang/item/17a8ed3c24d9b1ba134b14c2

先假如:数组的长度为10,数组元素为:25,19,6,58,34,10,7,98,160,0

整个希尔排序的算法过程如下如所示:

上图是原始数据和第一次选择的增量 d = 5。本次排序的结果如下图:

上图是第一次排序的结果,本次选择增量为 d=2。 本次排序的结果如下图:

当d=1 是进行最后一次排序,本次排序相当于冒泡排序的某一次循环。最终结果如下:

这个图下来 我估计大家都能看懂了。

接下来是源码时间:

点我下载源码

(转) 白话经典算法系列之三 希尔排序的实现(附源代码实现)

时间: 2024-11-14 07:03:42

(转) 白话经典算法系列之三 希尔排序的实现(附源代码实现)的相关文章

白话经典算法系列之三 希尔排序的实现

分类: 白话经典算法系列 2011-08-08 11:41 47406人阅读 评论(46) 收藏 举报 算法shell优化c 希尔排序的实质就是分组插入排序,该方法又称缩小增量排序,因DL.Shell于1959年提出而得名. 该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的 元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序.因为 直接插入排序在元素基本有序的情况下(接近最好情

白话经典算法系列之六 高速排序 高速搞定

高速排序因为排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被採用,再加上高速排序思想----分治法也确实有用,因此非常多软件公司的笔试面试,包含像腾讯,微软等知名IT公司都喜欢考这个,还有大大小的程序方面的考试如软考,考研中也经常出现高速排序的身影. 总的说来,要直接默写出高速排序还是有一定难度的,因为本人就自己的理解对高速排序作了下白话解释,希望对大家理解有帮助,达到高速排序,高速搞定. 高速排序是C.R.A.Hoare于1962年提出的一种划分交换排序.它採用了一种分治的

三白话经典算法系列 Shell排序实现

山是包插入的精髓排序排序.这种方法,也被称为窄增量排序,因为DL.Shell至1959提出命名. 该方法的基本思想是:先将整个待排元素序列切割成若干个子序列(由相隔某个"增量"的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序. 由于直接插入排序在元素基本有序的情况下(接近最好情况),效率是非常高的,因此希尔排序在时间效率上比前两种方法有较大提高. 以n=10的一个数组49, 38, 65, 97

白话经典算法系列之四 直接选择排序及交换二个数据的正确实现

分类: 白话经典算法系列 2011-08-09 11:15 16682人阅读 评论(29) 收藏 举报 算法面试c 直接选择排序和直接插入排序类似,都将数据分为有序区和无序区,所不同的是直接播放排序是将无序区的第一个元素直接插入到有序区以形成一个更大的有序区,而直接选择排序是从无序区选一个最小的元素直接放到有序区的最后. 设数组为a[0…n-1]. 1.      初始时,数组全为无序区为a[0..n-1].令i=0 2.      在无序区a[i…n-1]中选取一个最小的元素,将其与a[i]交

白话经典算法系列之五 归并排序的实现(转)

归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用. 首先考虑下如何将将二个有序数列合并.这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数.然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可. //将有序数组a[]和b[]合并到c[]中 void MemeryArray(int a[], int n, int b[], int m, int c[]) { int

白话经典算法系列之七 堆与堆排序

堆排序与高速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先解说下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是全然二叉树或者是近似全然二叉树. 二叉堆满足二个特性: 1.父结点的键值总是大于或等于(小于或等于)不论什么一个子节点的键值. 2.每一个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆). 当父结点的键值总是大于或等于不论什么一个子节点的键值时为最大堆.当父结点的键值总是小于或等于不论什么一个子节点的键值时为最小堆.下图展示一个最小堆

白话经典算法系列之二 直接插入排序的三种实现

分类: 白话经典算法系列 2011-08-06 19:27 52070人阅读 评论(58) 收藏 举报 算法 直接插入排序(Insertion Sort)的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止. 设数组为a[0…n-1]. 1.      初始时,a[0]自成1个有序区,无序区为a[1..n-1].令i=1 2.      将a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间. 3.      i+

白话经典算法系列之一 冒泡排序的三种实现

分类: 白话经典算法系列 2011-08-06 19:20 93923人阅读 评论(72) 收藏 举报 算法优化 冒泡排序是非常容易理解和实现,,以从小到大排序举例: 设数组长度为N. 1.比较相邻的前后二个数据,如果前面数据大于后面的数据,就将二个数据交换. 2.这样对数组的第0个数据到N-1个数据进行一次遍历后,最大的一个数据就“沉”到数组第N-1个位置. 3.N=N-1,如果N不为0就重复前面二步,否则排序完成. 按照定义很容易写出代码: [cpp] view plaincopy //冒泡

白话经典算法系列之七 堆与堆排序(转)

堆排序与快速排序,归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法.学习堆排序前,先讲解下什么是数据结构中的二叉堆. 二叉堆的定义 二叉堆是完全二叉树或者是近似完全二叉树. 二叉堆满足二个特性: 1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值. 2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆). 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆.当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆.下图展示一个最小堆: 由于其它几