彻底理解线索二叉树

一、线索二叉树的原理

通过考察各种二叉链表,不管儿叉树的形态如何,空链域的个数总是多过非空链域的个数。准确的说,n各结点的二叉链表共有2n个链域,非空链域为n-1个,但其中的空链域却有n+1个。如下图所示。

因此,提出了一种方法,利用原来的空链域存放指针,指向树中其他结点。这种指针称为线索。

记ptr指向二叉链表中的一个结点,以下是建立线索的规则:

(1)如果ptr->lchild为空,则存放指向中序遍历序列中该结点的前驱结点。这个结点称为ptr的中序前驱;

(2)如果ptr->rchild为空,则存放指向中序遍历序列中该结点的后继结点。这个结点称为ptr的中序后继;

显然,在决定lchild是指向左孩子还是前驱,rchild是指向右孩子还是后继,需要一个区分标志的。因此,我们在每个结点再增设两个标志域ltag和rtag,注意ltag和rtag只是区分0或1数字的布尔型变量,其占用内存空间要小于像lchild和rchild的指针变量。结点结构如下所示。

其中:

(1)ltag为0时指向该结点的左孩子,为1时指向该结点的前驱;

(2)rtag为0时指向该结点的右孩子,为1时指向该结点的后继;

(3)因此对于上图的二叉链表图可以修改为下图的养子。

二、线索二叉树结构实现

二叉线索树存储结构定义如下:

/* 二叉树的二叉线索存储结构定义*/
typedef enum{Link, Thread}PointerTag;    //Link = 0表示指向左右孩子指针;Thread = 1表示指向前驱或后继的线索

typedef struct BitNode
{
       char data;                                      //结点数据
       struct BitNode *lchild, *rchild;                //左右孩子指针
       PointerTag  Ltag;                               //左右标志
       PointerTag  rtal;
}BitNode, *BiTree;

线索化的实质就是将二叉链表中的空指针改为指向前驱或后继的线索。由于前驱和后继信息只有在遍历该二叉树时才能得到,所以,线索化的过程就是在遍历的过程中修改空指针的过程。

中序遍历线索化的递归函数代码如下:

BiTree pre;                 //全局变量,始终指向刚刚访问过的结点
//中序遍历进行中序线索化
void InThreading(BiTree p)
{
    if(p)
    {
        InThreading(p->lchild);          //递归左子树线索化
                //===
        if(!p->lchild)           //没有左孩子
        {
            p->ltag = Thread;    //前驱线索
            p->lchild = pre; //左孩子指针指向前驱
        }
        if(!pre->rchild)     //没有右孩子
        {
            pre->rtag = Thread;  //后继线索
            pre->rchild = p; //前驱右孩子指针指向后继(当前结点p)
        }
        pre = p;
                //===
        InThreading(p->rchild);      //递归右子树线索化
    }
}

上述代码除了//===之间的代码以外,和二叉树中序遍历的递归代码机会完全一样。只不过将打印结点的功能改成了线索化的功能。

中间部分代码做了这样的事情:

因为此时p结点的后继还没有访问到,因此只能对它的前驱结点pre的右指针rchild做判断,if(!pre->rchild)表示如果为空,则p就是pre的后继,于是pre->rchild = p,并且设置pre->rtag = Thread,完成后继结点的线索化。如图:

if(!p->lchild)表示如果某结点的左指针域为空,因为其前驱结点刚刚访问过,赋值了pre,所以可以将pre赋值给p->lchild,并修改p->ltag = Thread(也就是定义为1)以完成前驱结点的线索化。

完成前驱和后继的判断后,不要忘记当前结点p赋值给pre,以便于下一次使用。

有了线索二叉树后,对它进行遍历时,其实就等于操作一个双向链表结构。

和双向链表结点一样,在二叉树链表上添加一个头结点,如下图所示,并令其lchild域的指针指向二叉树的根结点(图中第一步),其rchild域的指针指向中序遍历访问时的最后一个结点(图中第二步)。反之,令二叉树的中序序列中第一个结点中,lchild域指针和最后一个结点的rchild域指针均指向头结点(图中第三和第四步)。这样的好处是:我们既可以从第一个结点起顺后继进行遍历,也可以从最后一个结点起顺前驱进行遍历。

遍历代码如下所示。

//t指向头结点,头结点左链lchild指向根结点,头结点右链rchild指向中序遍历的最后一个结点。
//中序遍历二叉线索树表示二叉树t
int InOrderThraverse_Thr(BiTree t)
{
    BiTree p;
    p = t->lchild;                               //p指向根结点
    while(p != t)                               //空树或遍历结束时p == t
    {
        while(p->ltag == Link)                       //当ltag = 0时循环到中序序列的第一个结点
        {
            p = p->lchild;
        }
        printf("%c ", p->data);                      //显示结点数据,可以更改为其他对结点的操作
        while(p->rtag == Thread && p->rchild != t)
        {
            p = p->rchild;
            printf("%c ", p->data);
        }

        p = p->rchild;                         //p进入其右子树
    }

    return OK;
}

说明:

(1)代码中,p = t->lchild;意思就是上图中的第一步,让p指向根结点开始遍历;

(2)while(p != t)其实意思就是循环直到图中的第四步出现,此时意味着p指向了头结点,于是与t相等(t是指向头结点的指针),结束循环,否则一直循环下去进行遍历操作;

(3)while(p-ltag == Link)这个循环,就是由A->B->D->H,此时H结点的ltag不是link(就是不等于0),所以结束此循环;

(4)然后就是打印H;

(5)while(p->rtag == Thread && p->rchild != t),由于结点H的rtag = Thread(就是等于1),且不是指向头结点。因此打印H的后继D,之后因为D的rtag是Link,因此退出循环;

(6)p=p->rchild;意味着p指向了结点D的右孩子I;

(7).....,就这样不断的循环遍历,直到打印出HDIBJEAFCG,结束遍历操作。

从这段代码可以看出,它等于是一个链表的扫描,所以时间复杂度为O(n)。

由于充分利用了空指针域的空间(等于节省了空间),又保证了创建时的一次遍历就可以终生受用后继的信息(意味着节省了时间)。所以在实际问题中,如果所用的二叉树需要经过遍历或查找结点时需要某种遍历序列中的前驱和后继,那么采用线索二叉链表的存储结构就是非常不错的选择。

#include <stdio.h>
#include <stdlib.h>

#define ERROR  0
#define OK  1

typedef enum{Link, Thread} PointerTag;      //link = 0表示指向左右孩子指针
                                            //Thread = 1表示指向前驱或后继的线索
typedef struct BitNode
{
    char data;                              //结点数据
    struct BitNode *lchild;                 //左右孩子指针
    struct BitNode *rchild;
    PointerTag ltag;                        //左右标志
    PointerTag rtag;
}BitNode, *BiTree;

BiTree pre;                                 //全局变量,始终指向刚刚访问过的结点

//前序创建二叉树
void CreateTree(BiTree *t)
{
    char ch;
    scanf("%c", &ch);

    if(ch == '#')
    {
        *t = NULL;
    }
    else
    {
        (*t) = (BiTree)malloc(sizeof(BitNode));
        if((*t) == NULL)
        {
            return;
        }
        (*t)->data = ch;
        CreateTree(&((*t)->lchild));
        CreateTree(&((*t)->rchild));
    }
}

//t指向头结点,头结点左链lchild指向根结点,头结点右链rchild指向中序遍历的最后一个结点。
//中序遍历二叉线索树表示的二叉树t
int InOrderThraverse_Thr(BiTree t)
{
    BiTree p;
    p = t->lchild;           //p指向根结点
    while(p != t)
    {
        while(p->ltag == Link)   //当ltag = 0时循环到中序序列的第一个结点
        {
            p = p->lchild;
        }
        printf("%c ", p->data);  //显示结点数据,可以更改为其他对结点的操作
        while(p->rtag == Thread && p->rchild != t)
        {
            p = p->rchild;
            printf("%c ", p->data);
        }

        p = p->rchild;           //p进入其右子树
    }

    return OK;
}

//中序遍历进行中序线索化
void InThreading(BiTree p)
{
    if(p)
    {
        InThreading(p->lchild);              //递归左子树线索化
        if(!p->lchild)                       //没有左孩子
        {
            p->ltag = Thread;                //前驱线索
            p->lchild = pre;             //左孩子指针指向前驱,这里是第3步
        }
        if(!pre->rchild)                 //没有右孩子
        {
            pre->rtag = Thread;              //后继线索
            pre->rchild = p;             //前驱右孩子指针指向后继(当前结点p)
        }
        pre = p;

        InThreading(p->rchild);              //递归右子树线索化
    }
}
//建立头结点,中序线索二叉树
int InOrderThread_Head(BiTree *h, BiTree t)
{
    (*h) = (BiTree)malloc(sizeof(BitNode));
    if((*h) == NULL)
    {
        return ERROR;
    }

    (*h)->rchild = *h;
    (*h)->rtag = Link;

    if(!t)      //如果为NULL
    {
        (*h)->lchild = *h;
        (*h)->ltag = Link;
    }
    else
    {
        pre = *h;
        (*h)->lchild = t;        //第一步
        (*h)->ltag = Link;
        InThreading(t);         //找到最后一个结点
        pre->rchild = *h;        //第四步
        pre->rtag = Thread;
        (*h)->rchild = pre;      //第二步
    }
}

int main(int argc, char **argv)
{
    BiTree t;
    BiTree temp;

    printf("请输入前序二叉树的内容:\n");
    CreateTree(&t);                 //建立二叉树
    InOrderThread_Head(&temp, t);       //加入头结点,并线索化
    printf("输出中序二叉树的内容:\n");
    InOrderThraverse_Thr(temp);

    printf("\n");
    return 0;
}

本文基于http://blog.chinaunix.net/uid-26548237-id-3476920.html进行完善!!

时间: 2024-08-28 04:50:56

彻底理解线索二叉树的相关文章

线索二叉树的深度理解

不知道你是否和我当时一样,对于线索二叉树,有点云里雾里的感觉,现在我们来一起探讨下吧. 首先,我们所应该知道的是:线索二叉树是对二叉链表中空指针的充分利用,也就是说,使得原本是空指针的转化成在某种遍历的顺序下,指向该结点的前驱和后继.也许听的有点糊涂,没关系,请接着往下看. 在二叉链表中,每个结点都带有*leftChild和*rightChild,两个指针,而除根结点外,每个结点只被一个指针所对应,要么是leftChild,要么是rightChild.而总共有2*n个指针,也就是说,有2*n-(

一步一步写数据结构(线索二叉树)

线索二叉树,在原始二叉树的基础上对节点进行“扩容”,使之变成了一颗节点信息更加丰富,利用率更高的二叉树.具体来说增加了两个指示标签,ltag和rtag,每个标签有两个值,1和0,0代表存在孩子,指针指向相应孩子,1代表没有对应的孩子,指针表示线索,指向其前驱或后继.这样虽然节点多占用了空间(其实很少,只是两个枚举常量而已),换来的却是让原来结构中存在的大量空指针利用起来,变成线索,指示前驱后继,从而使得空间利用效率大大提高, 并且有了线索以后,对后续的查找等操作提高很多效率. 下面是代码,本来以

小堆 线索二叉树补充

1.小堆: 堆的构造,i>数组直接生成堆(向下调整),iii>插入创建堆(向上调整): (1).怎么实现一次调整? 找到最后一个非叶子结点,n/2-1:一直往下调整即可! (2)堆排----->优先级队列 堆的删除,只能是堆顶元素,再拿最后一个元素补充上去.在向下做一次调整.形成新的堆结构(满足堆的性质),将删除的数字输出就是堆排. 小堆:根(父)小于左右结点:最小的数字先出: 大堆:根(父)大于左右结点:最大的数字先出:   因而,进行堆排是就是优先级队列! 2.线索二叉树的查找父结点

数据结构6.3_遍历二叉树和线索二叉树

所谓遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问. 访问结点所做的操作依赖于具体的应用问 题. 遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础. 一.遍历二叉树 二叉树是由三个基本单元组成的:根(D).左子树(L).右子树(R): 若能依次遍历这三个部分,便是遍历了整个二叉树. 若限定先左后右,则有三种遍历方案: 先根(序)遍历:DLR 中根(序)遍历:LDR 后根(序)遍历:LRD 二叉树的定义是递归的: 遍历二叉树分为递归算法和非递归

二叉树之线索二叉树

相对于顺序存储结构而言,利用链式存储结构的二叉树已经有了很高的存储效率,单是还是有空间上未利用到的地方,比如说叶子结点的左右孩子是空的,指向左右孩子的指针就是空闲的,没有被利用到:而且,有时候给定一个结点,我们需要查找该结点的前驱结点和后继结点,如果按照中序遍历的做法去查找的话,对于一个非叶子结点,其前驱和后继结点查找可以以下算法: 1.preNode=node.left;//前去结点就是该结点的左孩子 2.subNode=search(node.right)://后继结点是该结点的右子树的最左

数据结构之---C语言实现线索二叉树

//线索二叉树,这里在二叉树的基础上增加了线索化 //杨鑫 #include <stdio.h> #include <stdlib.h> typedef char ElemType; typedef enum {Link,Thread} childTag; //Link表示结点.Thread表示线索 typedef struct bitNode { ElemType data; struct bitNode *lchild, *rchild; int ltag, rtag; } b

一步两步学算法之中序遍历线索二叉树

1 typedef enum 2 { 3 SubTree, //子树 4 Thread //线索 5 }NodeFlag; 6 7 typedef struct ThreadTree 8 { 9 DATA data; 10 NodeFlag lflag; 11 NodeFlag rflag; 12 struct ThreadTree *left; 13 struct ThreadTree *right; 14 }ThreadBinTree; 15 16 ThreadBinTree *Previo

线索二叉树的实现

<span style="font-size:18px;">/* 1.二叉树遍历算法提供了二叉树的一次性遍历,可是二叉树遍历算法无法实现用户程序像分步 遍历单链表那样分步遍历二叉树.线索二叉树就是专门为实现分步遍历二叉树而设计的.线索二叉树能够实现像双向 链表那样,既能够从前向后分步遍历二叉树,又能够从后向前分步遍历二叉树 2.当按某种规则遍历二叉树时,保存遍历时得到的节点的后继节点信息和前驱节点信息的最经常使用的方法是建立线索二叉树 3.线索二叉树的规定:当某节点的左指针

javascript实现数据结构:线索二叉树

遍历二叉树是按一定的规则将树中的结点排列成一个线性序列,即是对非线性结构的线性化操作.如何找到遍历过程中动态得到的每个结点的直接前驱和直接后继(第一个和最后一个除外)?如何保存这些信息? 设一棵二叉树有n个结点,则有n-1条边(指针连线) , 而n个结点共有2n个指针域(Lchild和Rchild) ,显然有n+1个空闲指针域未用.则可以利用这些空闲的指针域来存放结点的直接前驱和直接后继信息. 对结点的指针域做如下规定: 1.若结点有左子树,则其leftChild域指示其左孩子,否则令leftC