ARM指令教程

ARM指令教程

ARM汇编程序特点:

l         所有运算处理都是发生通用寄存器(一般是R0~R14)的之中.所有存储器空间(如C语言变量的本质就是一个存储器空间上的几个BYTE).的值的处理,都是要传送到通用寄存器来完成.因此代码中大量看到LDR,STR指令来传送值.

l         ARM汇编语句中.当前语句很多时候要隐含的使用上一句的执行结果.而且上一句的执行结果,是放在CPSR寄存器里,(比如说进位,为0,为负…)

CMP R0,R1

BNE NoMatch

比如上一句,BNE隐含的使用的上一句CMP执行结果.NE后缀表示使用Z标志位.两句合起来的意思就是,如果R0,R1的值不相等,就跳转到NoMatch处执行.

注意,PC=R15,CPSR=R16,

ARM伪指令不是必须的,但是一个完整没有伪指令几乎很难写出来.

n         比如一个程序至少包含READONLY AREA和ENTRY,否则CPU都无法知道从哪里开始运行

l         ARM的属于RISC,指令并不多,但是可以带后缀表示扩展出不同用法,这里与X86汇编完全不同风格

n         如BNE实际上是B指令的变种,本质还同一类指令.只是多一个对CPSR的Z标志位的判断。

ARM常用指令,伪指令

ARM常用指令并不太多,因此使用阅读ARM汇编代码,并不太困难.以下是使用频率最高的指令和伪指令,并不是完整的指令集的教材。详细指令参见参考资料。

l         B,BL

l         MOV,MVN

l         LDR,STR

l         ADD,SUB,ADC,SBC,MUL

l         AND,ORR,XOR,TST,BIC

l         CMP

l         LDM/STM

l         nop

1.         跳转语句 B,BL

程序流程的跳转,在 ARM 程序中有两种方法可以实现程序流程的跳转指令用于实现

l  使用专门的跳转指令 B

l  直接向程序计数器PC 写入跳转地址值

n  这是几乎是任何一种CPU必备的机器,PC表示CPU当前执行语句位置,改变PC的值,相当于实现程序跳转

n  如实现类似C语言的Return 语句,就是用MOV PC,LR

n  这里可以在任意4G的空间进行跳转

B指令(Branch)表示无条件跳转.

B main ;跳转到标号为main地代码处

BL指令(Branch with Link)表示带返回值的跳转.

BL比B多做一步,在跳转前,BL会把当前位置保存在R14(即LR寄存器),当跳转代码结束后,用MOV PC,LR指令跳回来,这实际上就是C语言执行函数的用法,

汇编里调子程序都用BL,执行完子函数后,可以用MOV PC,LR跳回来.

BL delay ;执行子函数或代码段delay ,delay可以为C函数.

与MOV PC,XXX能在4G空间跳转不同,B语句只能32M空间跳转,(因为偏移量是一个有符号26bit的数值=32M)

2.         传输数据指令MOV,MVN

n  MOV(MOVE)指令可完成从另一个寄存器、被移位的寄存器或将一个立即数加载到目的寄存器

MOV R0,R1 ; 把R1的值传到R0

MOV R3,#3 ;把常数3传给R3,MOV中用#表示常数,这个值不能超过

n  MVN( MOVE Negative)取反后再传值,比MOV多了一步取反

MVN R0, #0 ;把0取反(即-1)传给R0

MVN R1,R2  ;把R2的值取反传给R1

3.         加载/存储指令,LDR,STR

n  LDR,STR是用于寄存器和外部存储器交换数据指令,注意与MOV的区别,后面只在寄存器或常数交换.

u              LDR/STR可以采用多种寻址方式,以下只举出使用频率最高几种用法

n  LDR(load)用于把一个32Bit的WORD数据从外部存储空间装入到寄存器中

LDR R0,[R1]; R1的值当成地址,再从这个地址装入数据到R0 (R0=*R1)

LDR R1,=0x30008000 ; 把地址0x30008000的值装入到R1中,LDR中用常数要用=打头.(注意跟MOV的区别,MOV是#)

ldr  r0, =(0<<13)|(0<<12)|(0<<10)|(0<<9)|(0<<8)|(1<<6)|(1<<5)|(1<<4)|(1<<1)|(1<<0)

用位与的方法赋值

n  STR(Store) 用于把一个寄存器的值存入外部存储空间,是LDR的逆操作.

STR R0,[R1] ; 把R0的值,存入到R1对应地址空间上(*R1 = R0)

STR R0,=0x30008000 ;把R0中值存入到地址0x30008000

S2C2440的中CPU内核以外的模块的控制寄存器空间也是属于外部空间,所以也得用如下指令LDR R0,=GPFDAT

4.         算术运算指令,ADD/ADC,SUB/SBC ,MUL

n         ADD加法指令

ADD R0,R1,R2; R0=R1+R2

ADD R0,R1,#3 ;R0=R1+3

n         ADC带进位加法指令,即除了加两个数以外,还要把CPSR的C值也要带进来

u              通常用于大数(超过32Bit整数)相加,这时单用ADD不能处理,必须折成两步,其中一步用ADC.

u              以下是做64Bit的加法

ADDS R0,R1,R2; R0=R1+R2,ADDS中S表示把进位结果写入CPSR

ADC R5,R3,R4 ;R5=R3+R4+C

n         SUB减法指令

SUB R0,R1,R2; R0=R1-R2

SUB R0,R1,#3 ;R0=R1-3

n         SBC带进位减法指令,即除了加两个数以外,还要把CPSR的C值也要带进来,类似ADC

u              以下是做64Bit的减法

SUBS R0,R1,R2; R0=R1-R2,SUBS中S表示把进位结果写入CPSR

SBC R5,R3,R4 ;R5=R3-R4-C

n         MUL 乘法指令

MUL R0,R1,R2; R0=R1*R2

MUL R0,R1,#3 ;R0=R1*3

5.         位操作指令 AND,ORR, TST,BIC

n         AND位与指令

AND R0,R1,R2; R0=R1 & R2

AND R0,R1,#0xFF ;R0=R1 & 0xFF

n         ORR位或指令

ORR R0,R1,R2; R0=R1 | R2

ORR R0,R1,#0xFF ;R0=R1 | 0xFF

n         TST测试某一位是否为1,并把结果写入CPSR,供下一句使用

TST R1,#0xffe;   等同于if(R1 & 0xffe)

TST R1,#%1;测试最低位是否为1,%表示二进制

n         BIC清位操作

BIC   R0,R0,#0xF          ; 等同于 R0 &=~(0xF)

BIC   R0,R0,#%1011   ; 该指令清除 R0 中的位 0 1  3,其余的位保持;   %表示是二进制,0x表示十六进制

6.         比较指令 CMP

n         CMP比较两个操作数,并把结果存入CPSR供下一句语句使用

CMP R0,R1; 比较R0,R1

7.         多寄存器语句传输指令,LDM,STM

类似于一次传一个BUFFER到寄存器当中,或反过来.后面一般要接一个地址改变方法

n         LDM 从BUFFER传数据多个寄存器传输数据到

LDMIA R0! ,{R3-R9} ;加R0指向的地址上连续空间的数据,保存到R3-R9当中,!表示R0值更新,IA后缀表示按WORD递增

LDMFD SP!,{R0-R7,PC}^;恢复现场,异常处理返回,^表示不允许在用户模式下使用。

n         STM 从寄存器列表向存储空间传值。

STMIA R1!,{R3-R9} ;将R3-R9的数据存储到R1指向的地址上,R1值更新。

STMFD SP!,{R0-R7,LR}; 现场保存,将R0~R7,LR入栈

 stmfd    sp!,{r8-r9} ,把SP寄存器对庆的地址的值存到R8,R9当中.!表示最后的值写入SP中。Fd表示

8.         ARM指令的变形

大部分指令后位可以接 与S两个特殊位来表示,对CPSR特殊的一些判断

S,表示当前指令执行后把结果改写CPSR

subs,Adds

取决于具体条件,只有CPSR满足指定条件时才指这一指令

BEQ 实际上B+ EQ的条件执行.

addne 表示ADD +NE 才开始加.

9.         ARM指令的寻址方式

寻址方式是根据指令中给出的地址码来定位真实的地址,ARM中有9种寻址方法

l  寄存器寻址

直接用寄存器编号来寻址,最为常用

MOV R1,R2 ;R2->R1

l  立即数寻址

即指令中的地址码是操作数本身,可以立即取出使用,立即数前带一个#表示,否则表示一个地址

SUBS R0,R0,#1   ;R0 -1 ->R0

注意与SUBS R0,R0,1区别

l  寄存器偏移寻址

这是ARM特有的寻址模式,当第2操作数是寄存器,在执行操作之前,可以做一次移位操作

MOV R0,R2,LSL #3 ;R2的逻辑左移3位,结果放入R0,即R0=R2*8

ANDS R1,R1,R2,LSL R3;RS的值左移R3位,然后和R1相与操作,结果放入R1

移位操作有LSL (逻辑左移),LSR(逻辑右移) ,ASR(算术右移),ROR(循环右移)RRX带扩展的循环右移

l         寄存器间接寻址

即寄存器中值是一个地址,用[]来取出定位到地址当中

LDR R2,[R0] ;把R0的值当成地址,取出相应值,赋给R2

l         基址寻址

把寄存器的地址值加上一个偏移量

LDR R2,[R3,#0x0F]; R3中的值加上0x0F,从这个地址取出值赋给[email protected]

l         相对寻址

基址寻址的变形,由PC寄存器提供基准地址,指令中地址段作为偏移量.两者相加即是有效地址,以下是BL采用相对寻址

BL NEXT

NEXT

MOV PC,LR ;从子程序返回

10.     ADS ARM的伪指令

类似于C语言的宏,由汇编程序预处理.

l         符号定义指令

全局变量定义 GBLA ,GBLL,GBLS

局域变量定义 LCLA,LCLL,LCLS

变量赋值SETA,SETL,SETS

其中上述伪指令中,最后面的A表示给一个算术变量赋值,L表示用于给一个逻辑变量赋值,s表示给一个字符串赋值

GBLL codedbg; 声明一个全局的逻辑变量

Codebg SETL  {TRUE}  ; 设置变量为{TRUE}

LCLA bitno;  声明一个算术变量

Bitno SETA 8 ;设变量值为8

l         数据定义伪指令

n         SPACE 定义一个内存空间,并用0初始化

{label }  SPACE expr

DataBuf SPACE 100 ;定义100字节长空间, unsigned char DataBuf[100];

n         DCB 定义一个连续字节内存空间,用伪指令的表达式expr来初始化.一般可以用定义数据表格,或文字字符串.(这时等同于SETS),用于初始二进制BUFFER

{label} DCB expr{,expr …}

Dest DCB -120,20,36,55 ;等同于 unsigned char Dest[]={-120,20,36,55};

n         DCU定义的一段字的内存空间(DCB是字节),并用后面表达式初始化

_RESET DCU Reset ; 等同于 DWORD _RESET[]={Reset};

n          MAP定一个结构化内存,相当于定义一个C结构

n         FILED 定义一个结构化内存的成员

MAP 0x00,R9 ; 定义内存表,地址为R9

Timer   FIELD 4 ; 定义数据域Timer,长为4字

Attrib  FIELD 4 ; 定义数据域Attrib,长为4字

String  FILED 100  ; 定义数据域String ,长为100字

相当于C语言的定义:

struct {

DWORD Timer ;

DWORD Attrib ;

Char String[100];

} R9;

11.     杂项的伪指令

n         字节对齐 ALIGN

ALIGN; 声明4字节对齐

n         定义一个数字常量定义 EQU

NAME EQU expr {type}

PLLCON EQU 0xE01FC080;定义PLLCON,类似于C的宏或C++的常量

n         包含文件 GET和INCLUDE

INCLUDE lpc2106.inc

n         NOP 空指令

在汇编时会被ARM的空操作代替,比如MOV R0,R0,一般用于延时与占位。

n         声明一个外部符符号 IMPORT,EXTERN

IMPORT,EXTERN 向外部导入一个符号,一般是外部程序全局变量

n         条件编译:[]。类似于C的#ifdef 之类定义。

格式 :条件表达式

        满足条件分支

        |

        不满足条件分支

      ]

示例1:

[ ENTRY_BUS_WIDTH=32  ;类似#if ENTRY_BUS_WIDTH=32

b   ChangeBigEndian     ;DCD 0xea000007

] ; 类似#endif

示例2:   [ CLKDIV_VAL>1      ; 类似#if CLKDIV_VAL>1

bl MMU_SetAsyncBusMode

|;类似#else

bl MMU_SetFastBusMode ; default value.

]; 类似#endif

示例3 [ THUMBCODE  类似#ifdef  THUMBCODE

bx lr

| ;类似#else

mov   pc,lr

]  ;类似#endif

n         段定义 AREA

n         指令集定义 CODE16和CODE32

指示是Thumb 指令集(压缩指令集,每个指令16位)。还是普通32位指令集

n         汇编结束:END

n         程序入口ENTRY

一个基本ARM程序结构

ARM汇编程序结构

源代码由文本文件组成.按照汇编的编译器不同,分为两大量,一类是ADS的汇编程序,一类是GNU汇编格式,两者在指令集是完成一样,但是在伪指令.程序结构等方法各不同相同.本节主要是讲解ADS汇编格式.

ADS汇编程序,主要包含如下几类程序

n         汇编源程序,后缀名是.S

n         汇编包含文件,后缀名是.inc

n         如果是与C混和编程..C,.h也能识别

ARM 汇编语句格式

 [标号]  <指令|条件|S> <操作数> [;注释]

 

l         所有标号顶格写,而指令和伪指令不能顶格写

l         标识符(标号,指令)大小写敏感,所以要在标号和指令时书写一致,一般伪指令,指令,寄存器名可以全部为大写

l         注释以;开头,可以顶格写

l         可以使用\来分行写太长语句

l         变量,常量的定义必须在一行顶格写

常量的书写

l         数字常量

在程序中直接写数字 ,十进制 12,256,十六进制 0x1228,

l         字符常量

类似于C的定义,用SETS来定义字符常量

HELLO SETS “hello,the world!”

l         逻辑常量

逻辑真为{TRUE},逻辑假为{FLASE}

Testno SETS {TURE}

 汇编程序的段定义

任何一个程序都要分段,C语言一般由编译器自动分段,(分成.Text,.Data段之类),但在汇编程序这样的底层程序中,由开发者自行分段.  它包含如下段

l         至少一个代码段,并且代码段是只读的,对应(.Text)

l         数据段可以没有,也可以有多个.

l         每一个段用END结束

AREA 定义一个段

AREA  段名    属性1, 属性2,

例子:AREA Init,CODE,READONLY

l         ENTRY 指明一个段的入口

l         END结束一个段

ABC EQU 0x12

AREA Example,CODE,READONLY

ENTRY

START MOV R7,#10

MOV R6,#5

ADD R6,R6,R7

B

      END

ADS ARM汇编程序格式要求

1.     所有标号要顶格写.

2.     所有指令不能顶格写,一般插入Tab键在行首

3.     ADS ARM中,是大小写敏感的.建议标号,指令,伪指令,寄存器名全部为大写

4.     注释采用;打头

5.     每个程序至少有一个AREA在代码里(READONLY)

6.     每个段都要用END结束(不能顶格)

最常见几个伪指令 AREA,EQU,DCB,END ,ENTRY,EXPORT,GOBEL,IMPORT,

常见伪定义

l         DCB 定义字符中

Str DCB “hello, world “

时间: 2024-11-22 17:10:12

ARM指令教程的相关文章

头文件定义和ARM指令

2015.2.2星期一,阴天 内存管理:内存的分配和释放等静态和动态内存:主要是在释放方式上的区别 静态变量:编译时就已经确定,定义在函数外面自动变量:在程序运行时才能在栈中确定只读数据节:存放常量的地方,包括字符常量,不修改的数据 查看数据存放在那个节点:(用命令)readelf -S (查看节点号和节点名)readelf -x .data a.out 生命周期:(分成静态,动态) 两个宏的定义和包含: 定义一个a.h#ifndef _A_H_#define _A_H_............

ARM指令集中常用的存储和加载指令

ARM微处理器支持加载/存储指令用于在寄存器和存储器之间传送数据,加载指令用于将存储器中的数据传送到寄存器,存储指令则完成相反的操作.常用的加载存储指令如下: -  LDR     字数据加载指令 -       LDRB    字节数据加载指令 -  LDRH    半字数据加载指令 -  STR     字数据存储指令 -       STRB    字节数据存储指令 -  STRH    半字数据存储指令 1.LDR指令 LDR指令的格式为: LDR{条件} 目的寄存器,<存储器地址>

Android ARM指令学习

在逆向分析Android APK的时候,往往需要分析它的.so文件.这个.so文件就是Linux的动态链接库,只不过是在ARM-cpu下编译的.所以学习Android下的ARM指令很重要.目前,市面上的ARM-cpu基本都支持一种叫做THUMB的指令集模式.这个THUMB指令集可以看作是ARM指令集的子集,只不过ARM指令集为32bit,THUMB指令集为16bit.之所以要使用这个THUMB指令集,主要是为了提升代码密度.具体信息大家可以google. 下面介绍如何简单修改.so文件. 首先,

ARM指令分类及其寻址方式

ARM指令分类及其寻址方式 一:ARM指令的分类 ARM指令集可以分为以下6类: •跳转指令: •数据处理指令: •程序状态寄存器(PSR)传输指令: •load/store指令: •协处理器指令: •异常中断产生指令: 二.ARM指令的一般编码格式 ARM指令字长为固定的32位.一条典型的ARM指令语法格式及编码格式如下: 语法格式: <opcode>{<cond>}{s}   <Rd>,<Rn>,<shifter_operand> •<

ARM指令解析

今天我来总结一下arm指令的学习,今天我不会对所有的arm指令进行一一的解析,在这里希望大家去看arm汇编手册,这个手册的中文版我放在了http://download.csdn.net/detail/wrjvszq/8324589大家先拿到这个文档,这个文档对arm指令的解析相当的全面,但是这里要注意的是文档是arm对标准的汇编写出的文档,但是我们要用的是gnu的汇编,这两个稍微有点区别,关于区别大家可以去看看这个博客http://www.cnblogs.com/hnrainll/archive

arm指令bne.w改成b,即无条件跳转

近期逆向一个程序,需要把bne.w改成b,无条件跳转.由于ios逆向不像pc上,可以在od里直接改汇编指令,这篇文章给了我很大的帮助.通过memory write 修改后,验证可行后,再用ultraedit修改二进制文件,保存可执行程序.再拷贝到ios设备,即可. 文章出处:http://blog.chinaunix.net/uid-22915173-id-225005.html ARM中的常用指令含义ADD 加指令SUB 减指令STR    把寄存器内容存到栈上去LDR    把栈上内容载入一

常用的ARM指令

数据处理指令 (1)数据传输指令 mov mvn (2)算术指令 add sub rsb adc sbc rsc (3)逻辑指令 and orr eor bic       //与或非 (4)比较指令 cmp cmn tst teq (5)乘法指令 mvl mla umull umlal smull smlal (6)前导零计数 clz        (用的不多) 详细分析: mov r1, r0     @两个寄存器之间数据传递,r0赋值给r1 mov r1, #0x0 @将立即数赋值给寄存器

iOS逆向工程之Hopper中的ARM指令

一.Hopper中的ARM指令 ARM处理器就不多说了,ARM处理器因为低功耗等原因,所以大部分移动设备上用的基本上都是ARM架构的处理器.当然作为移动设备的Android手机,iPhone也是用的ARM架构的处理器.如果你想对iOS系统以及你的应用进一步的了解,那么对ARM指令集的了解是必不可少的,ARM指令集应该也算得上是iOS逆向工程的基础了. 当你使用Hopper进行反编译时,里边全是ARM的指令,那是看的一个爽呢.下面就是使用Hopper打开MobileNote.app的一个Hoppe

ARM指令和Thumb指令区别

Thumb指令集 Thumb指令可以看做是ARM指令压缩形式的子集,是针对代码密度[1]的问题而提出的,它具有16为的代码密度.Thumb不是一个完整的体系结构,不能指望处理程序只执行Thumb指令而不支持ARM指令集.因此,Thumb指令只需要支持通用功能,必要时,可借助完善的ARM指令集,例如:所有异常自动进入ARM状态. 在编写Thumb指令时,先要使用伪指令CODE16声明,而且在ARM指令中要使用BX指令跳转到Thumb指令,以切换处理器状态.编写ARM指令时,可使用伪指令CODE32