协方差矩阵特征向量的意义

这是 Quora上的一篇文章:http://www.quora.com/What-is-an-eigenvector-of-a-covariance-matrix

协方差矩阵最大特征值对应的特征向量的方向,就是数据变化最大的方向。其他特征向量依次正交。

时间: 2024-10-28 15:30:23

协方差矩阵特征向量的意义的相关文章

特征向量的意义

来源:http://www.cnblogs.com/doucontorl/archive/2010/12/31/1923104.html 特征向量的意义 因为l是常数,所以lx与x的方向相同.即,一个变换的特征向量是这样一种向量,它经过这种特定的变换后保持方向不变,只是进行长度上的伸缩而已. 下图是从wikipedia的<特征向量>一文中引用的.通过这个图可以对变与不变有一个进一步的了解. 图1 图1. 在这个错切变换中,蒙娜丽莎的图像被变形,但是中心的纵轴在变换下保持不变.(注意:角落在右边

漫谈高数 特征向量物理意义

[1. 特征的数学意义]        我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换.我们可以把原坐标系的(x,y)乘以一个矩阵,得到一个新的(x',y')的表示形式,写为算子的形式就是(x,y)*M=(x',y').这里的矩阵M代表一种线性变换:拉伸,平移,旋转.那么,有没有什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(x,y)*b像是一个数b乘以了一个数字m*b? 换句话说

PCA 协方差矩阵特征向量的计算

人脸识别中矩阵的维数n>>样本个数m. 计算矩阵A的主成分,根据PCA的原理,就是计算A的协方差矩阵A'A的特征值和特征向量,但是A'A有可能比较大,所以根据A'A的大小,可以计算AA'或者A'A的特征值,原矩阵和其转置矩阵的特征值是一样的,只是特征向量不一样. 假如我们的数据按行存放,A是m*n的矩阵,n>>m,m是样本个数,n是维数,则协方差矩阵应该是A'A,A'A是n*n维的一个矩阵,这个矩阵非常大,不利于求特征值和特征向量,所以先求AA'的特征值,它是一个m*m维的矩阵.

OpenCV人脸识别Eigen算法源码分析

1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本集合的各个样本点到均值的距离之平均.以一个国家国民收入为例,均值反映了平均收入,而均方差/方差则反映了贫富差距,如果两个国家国民收入均值相等,则标准差越大说明国家的国民收入越不均衡,贫富差距较大.以上公式都是用来描述一维数据量的,把方差公式推广到二维,则可得到协方差公式: 协方差表明了两个随机变量之

关于PCA算法的一点学习总结

本文出处:http://blog.csdn.net/xizhibei ============================= PCA,也就是PrincipalComponents Analysis,主成份分析,是个非常优秀的算法,依照书上的说法: 寻找最小均方意义下,最能代表原始数据的投影方法 然后自己的说法就是:主要用于特征的降维 另外,这个算法也有一个经典的应用:人脸识别.这里略微扯一下,无非是把处理好的人脸图片的每一行凑一起作为特征向量,然后用PAC算法降维搞定之. PCA的主要思想是

【转】浅谈对主成分分析(PCA)算法的理解

以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特征提取及数据维,我们知道输入200*200大小的人脸图像,单单提取它的灰度值作为原始特征,则这个原始特征将达到40000

数据降维方法小结

原文:http://blog.csdn.net/yujianmin1990/article/details/48223001 数据的形式是多种多样的,维度也是各不相同的,当实际问题中遇到很高的维度时,如何给他降到较低的维度上?前文提到进行属性选择,当然这是一种很好的方法,这里另外提供一种从高维特征空间向低纬特征空间映射的思路. 数据降维的目的 数据降维,直观地好处是维度降低了,便于计算和可视化,其更深层次的意义在于有效信息的提取综合及无用信息的摈弃. 数据降维的方法 主要的方法是线性映射和非线性

【转】PCA算法学习_1(OpenCV中PCA实现人脸降维)

前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. 开发环境:ubuntu12.04+Qt4.8.2+QtCreator2.5.1+opencv2.4.2 PCA数学理论: 关于PCA的理论,资料很多,公式也一大把,本人功底有限,理论方面这里就不列出了.下面主要从应用的角度大概来讲讲具体怎么实现数据集的降维. 把原始数据中每个样本用一个向量表示,然

斯坦福NG机器学习课程:Dimensionality_reduction笔记

Dimensionality_reduction 首先通过图形化描述引出为什么需要进行数据降维?以及数据降维的motivation. Data compression Data compression 降低维度:好处减少计算机内存.磁盘等硬件使用,更重要的是加速学习算法执行速度.例子 上面是很简单直观的降维的图形描述,分别有2维降维1维,三维降维2维. 习题: Visualization 降低维度另一个目的:进行Visualization,维度太高我们无法用图形直观来进行可视化处理,所以降低维度