漫游Kafka设计篇之数据持久化

不要畏惧文件系统!

Kafka大量依赖文件系统去存储和缓存消息。对于硬盘有个传统的观念是硬盘总是很慢,这使很多人怀疑基于文件系统的架构能否提供优异的性能。实际上硬盘的快慢完全取决于使用它的方式。设计良好的硬盘架构可以和内存一样快。
在6块7200转的SATA RAID-5磁盘阵列的线性写速度差不多是600MB/s,但是随即写的速度却是100k/s,差了差不多6000倍。现代的操作系统都对次做了大量的优化,使用了 read-ahead 和 write-behind的技巧,读取的时候成块的预读取数据,写的时候将各种微小琐碎的逻辑写入组织合并成一次较大的物理写入。对此的深入讨论可以查看这里,它们发现线性的访问磁盘,很多时候比随机的内存访问快得多。
为了提高性能,现代操作系统往往使用内存作为磁盘的缓存,现代操作系统乐于把所有空闲内存用作磁盘缓存,虽然这可能在缓存回收和重新分配时牺牲一些性能。所有的磁盘读写操作都会经过这个缓存,这不太可能被绕开除非直接使用I/O。所以虽然每个程序都在自己的线程里只缓存了一份数据,但在操作系统的缓存里还有一份,这等于存了两份数据。
另外再来讨论一下JVM,以下两个事实是众所周知的:

  • Java对象占用空间是非常大的,差不多是要存储的数据的两倍甚至更高。
  • 随着堆中数据量的增加,垃圾回收回变的越来越困难。

基于以上分析,如果把数据缓存在内存里,因为需要存储两份,不得不使用两倍的内存空间,Kafka基于JVM,又不得不将空间再次加倍,再加上要避免GC带来的性能影响,在一个32G内存的机器上,不得不使用到28-30G的内存空间。并且当系统重启的时候,又必须要将数据刷到内存中( 10GB 内存差不多要用10分钟),就算使用冷刷新(不是一次性刷进内存,而是在使用数据的时候没有就刷到内存)也会导致最初的时候新能非常慢。但是使用文件系统,即使系统重启了,也不需要刷新数据。使用文件系统也简化了维护数据一致性的逻辑。

所以与传统的将数据缓存在内存中然后刷到硬盘的设计不同,Kafka直接将数据写到了文件系统的日志中。

常量时间的操作效率

在大多数的消息系统中,数据持久化的机制往往是为每个cosumer提供一个B树或者其他的随机读写的数据结构。B树当然是很棒的,但是也带了一些代价:比如B树的复杂度是O(log N),O(log N)通常被认为就是常量复杂度了,但对于硬盘操作来说并非如此。磁盘进行一次搜索需要10ms,每个硬盘在同一时间只能进行一次搜索,这样并发处理就成了问题。虽然存储系统使用缓存进行了大量优化,但是对于树结构的性能的观察结果却表明,它的性能往往随着数据的增长而线性下降,数据增长一倍,速度就会降低一倍。
直观的讲,对于主要用于日志处理的消息系统,数据的持久化可以简单的通过将数据追加到文件中实现,读的时候从文件中读就好了。这样做的好处是读和写都是 O(1) 的,并且读操作不会阻塞写操作和其他操作。这样带来的性能优势是很明显的,因为性能和数据的大小没有关系了。
既然可以使用几乎没有容量限制(相对于内存来说)的硬盘空间建立消息系统,就可以在没有性能损失的情况下提供一些一般消息系统不具备的特性。比如,一般的消息系统都是在消息被消费后立即删除,Kafka却可以将消息保存一段时间(比如一星期),这给consumer提供了很好的机动性和灵活性,这点在今后的文章中会有详述。

时间: 2024-12-28 12:36:50

漫游Kafka设计篇之数据持久化的相关文章

漫游Kafka设计篇之效率优化

原文地址:http://blog.csdn.net/honglei915/article/details/37564757 Kafka在提高效率方面做了很大努力.Kafka的一个主要使用场景是处理网站活动日志,吞吐量是非常大的,每个页面都会产生好多次写操作.读方面,假设每个消息只被消费一次,读的量的也是很大的,Kafka也尽量使读的操作更轻量化. 我们之前讨论了磁盘的性能问题,线性读写的情况下影响磁盘性能问题大约有两个方面:太多的琐碎的I/O操作和太多的字节拷贝.I/O问题发生在客户端和服务端之

漫游Kafka设计篇之Producer和Consumer

Kafka Producer 消息发送 producer直接将数据发送到broker的leader(主节点),不需要在多个节点进行分发.为了帮助producer做到这点,所有的Kafka节点都可以及时的告知:哪些节点是活动的,目标topic目标分区的leader在哪.这样producer就可以直接将消息发送到目的地了. 客户端控制消息将被分发到哪个分区.可以通过负载均衡随机的选择,或者使用分区函数.Kafka允许用户实现分区函数,指定分区的key,将消息hash到不同的分区上(当然有需要的话,也

漫游Kafka设计篇之性能优化

Kafka在提高效率方面做了很大努力.Kafka的一个主要使用场景是处理网站活动日志,吞吐量是非常大的,每个页面都会产生好多次写操作.读方面,假设每个消息只被消费一次,读的量的也是很大的,Kafka也尽量使读的操作更轻量化. 我们之前讨论了磁盘的性能问题,线性读写的情况下影响磁盘性能问题大约有两个方面:太多的琐碎的I/O操作和太多的字节拷贝.I/O问题发生在客户端和服务端之间,也发生在服务端内部的持久化的操作中.消息集(message set)为了避免这些问题,Kafka建立了“消息集(mess

漫游Kafka设计篇之消息传输的事务定义

之前讨论了consumer和producer是怎么工作的,现在来讨论一下数据传输方面.数据传输的事务定义通常有以下三种级别: 最多一次: 消息不会被重复发送,最多被传输一次,但也有可能一次不传输. 最少一次: 消息不会被漏发送,最少被传输一次,但也有可能被重复传输. 精确的一次(Exactly once):  不会漏传输也不会重复传输,每个消息都传输被一次而且仅仅被传输一次,这是大家所期望的. 大多数消息系统声称可以做到“精确的一次”,但是仔细阅读它们的的文档可以看到里面存在误导,比如没有说明当

漫游Kafka设计篇之主从同步

Kafka允许topic的分区拥有若干副本,这个数量是可以配置的,你可以为每个topci配置副本的数量.Kafka会自动在每个个副本上备份数据,所以当一个节点down掉时数据依然是可用的. Kafka的副本功能不是必须的,你可以配置只有一个副本,这样其实就相当于只有一份数据. 创建副本的单位是topic的分区,每个分区都有一个leader和零或多个followers.所有的读写操作都由leader处理,一般分区的数量都比broker的数量多的多,各分区的leader均匀的分布在brokers中.

漫游Kafka入门篇之简单介绍

原文地址:http://blog.csdn.net/honglei915/article/details/37564521 介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计.这个独特的设计是什么样的呢? 首先让我们看几个基本的消息系统术语: Kafka将消息以topic为单位进行归纳. 将向Kafka topic发布消息的程序成为producers. 将预订topics并消费消息的程序成为consumer. Kafka以集群的方式运行,

漫游Kafka实现篇之消息和日志

原文地址:http://blog.csdn.net/honglei915/article/details/37760631 消息格式 消息由一个固定长度的头部和可变长度的字节数组组成.头部包含了一个版本号和CRC32校验码. /** * 具有N个字节的消息的格式如下 * * 如果版本号是0 * * 1. 1个字节的 "magic" 标记 * * 2. 4个字节的CRC32校验码 * * 3. N - 5个字节的具体信息 * * 如果版本号是1 * * 1. 1个字节的 "ma

漫游kafka实战篇之搭建Kafka开发环境

转载注明出处:http://blog.csdn.net/honglei915/article/details/37563647 上篇文章中我们搭建了kafka的服务器,并可以使用Kafka的命令行工具创建topic,发送和接收消息.下面我们来搭建kafka的开发环境. 添加依赖 搭建开发环境需要引入kafka的jar包,一种方式是将Kafka安装包中lib下的jar包加入到项目的classpath中,这种比较简单了.不过我们使用另一种更加流行的方式:使用maven管理jar包依赖. 创建好mav

(转)漫游Kafka入门篇之简单介绍

转自:http://blog.csdn.net/honglei915/article/details/37564521 原文地址:http://blog.csdn.net/honglei915/article/details/37564521 介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计.这个独特的设计是什么样的呢? 首先让我们看几个基本的消息系统术语: Kafka将消息以topic为单位进行归纳. 将向Kafka topic发布消