一条sql导致数据库整体性能下降的诊断和解决的全过程

今天早上一来,数据库load就比往常高了许多。想想数据库唯一的变化是昨天早上我曾经重新分析过数据库对象。

[@[email protected]]

发现数据库load很高,首先看top发现没有特别异常的进程,在数据库中适时抓取正在运行的sql也没发现异常(通常运行时间非常短的sql是不能被抓取到的)。询问相关应用程序人员,最近没有变动。检查应用程序日志发现今天早上跟往常也没有过多登陆和操作。基本上可以圈定是在数据库服务器本身上面。

但是这个时候我还没有办法确定到底是哪个应用的哪个查询的问题,因为数百个进程的几十台server连着,我不能去及时的追踪。打算等到10点过去后,抽取8/9/10高峰期的整点的statspack出来,跟上星期的这个时间产生的报告对比看看。

通过对比报告我们发现 CPU TIME 今天一小时内增加了大约1200秒(2,341  - 1,175    )。这是一个重大的变化,很显然是两种可能

1:今天过多地执行了某些sql

2:某些sql的执行计划发生变化导致cpu使用过多

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                                     % Total
Event                                               Waits    Time (s) Ela Time
-------------------------------------------- ------------ ----------- --------
CPU time                                                        2,341    42.60
db file sequential read                           387,534       2,255    41.04
global cache cr request                           745,170         231     4.21
log file sync                                      98,041         229     4.17
log file parallel write                            96,264         158     2.88

Event                                               Waits    Time (s) Ela Time
-------------------------------------------- ------------ ----------- --------
db file sequential read                           346,851       1,606    47.60
CPU time                                                        1,175    34.83
global cache cr request                           731,368         206     6.10
log file sync                                      90,556          91     2.71
db file scattered read                             37,746          90     2.66

接下来我对比了 sql 部分内容,发现

Buffer Gets    Executions  Gets per Exec  %Total Time (s)  Time (s) Hash Value
--------------- ------------ -------------- ------ -------- --------- ----------
     17,899,606       47,667          375.5   55.6  1161.27   1170.22 3481369999
Module: /home/oracle/AlitalkSrv/config/../../AlitalkSrv/
SELECT login_id, to_char(gmt_create, ‘YYYY-MM-DD HH24:MI:SS‘)
  from IM_BlackList     where black_id = :b1

这条sql出现在了今天报告的前列,而以往的报告中该sql根本不排在 buffer  gets 前面位置,显然这条sql消耗了大约  1161.27 秒 cpu  time .检查原来的报告

Buffer Gets    Executions  Gets per Exec  %Total Time (s)  Time (s) Hash Value
--------------- ------------ -------------- ------ -------- --------- ----------

107,937       47,128            2.3    0.8     7.39      6.94 3481369999
Module: /home/oracle/AlitalkSrv/config/../../AlitalkSrv/
SELECT login_id, to_char(gmt_create, ‘YYYY-MM-DD HH24:MI:SS‘)
  from IM_BlackList     where black_id = :b1

我们发现只消耗了  7.39 秒的 cpu time 。

到这个时候我基本可以断定,是由于这个sql没有走索引而走了全表扫描。但是为什么会走全表扫描呢,这是一个问题,接下来我检查了表的索引:

SQL>      select  index_name,column_name from  user_ind_columns where  table_name = ‘IM_BLACKLIST‘;

IM_BLACKLIST_PK                LOGIN_ID
IM_BLACKLIST_PK                BLACK_ID
IM_BLACKLIST_LID_IND           BLACK_ID

很显然存在着 black_id 的单独的索引,应该正常使用才对。于是我在生产库上执行这个sql一看,却发现走了全表扫描。为此我到一个周六的standby的opren  read  only 的数据库上查询了一下该索引字段的histogram(这个时候昨天早上分析对象的日志还没有被应用过去)

[email protected]> select  COLUMN_NAME ,ENDPOINT_NUMBER, ENDPOINT_VALUE  , ENDPOINT_ACTUAL_VALUE  from  dba_histograms
  2   where  table_name =  ‘IM_BLACKLIST‘ and  column_name = ‘BLACK_ID‘;

COLUMN_NAME                    ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACTUAL_VALUE
------------------------------ --------------- -------------- ------------------------------
BLACK_ID                                     0     2.5031E+35
BLACK_ID                                     1     2.6065E+35
BLACK_ID                                     2     2.8661E+35
BLACK_ID                                     3     5.0579E+35
BLACK_ID                                     4     5.0585E+35
BLACK_ID                                     5     5.0585E+35
BLACK_ID                                     6     5.0589E+35
BLACK_ID                                     7     5.0601E+35
BLACK_ID                                     8     5.1082E+35
BLACK_ID                                     9     5.1119E+35
BLACK_ID                                    10     5.1615E+35
BLACK_ID                                    11     5.1616E+35
BLACK_ID                                    12     5.1628E+35
BLACK_ID                                    13     5.1646E+35
BLACK_ID                                    14     5.2121E+35
BLACK_ID                                    15     5.2133E+35
BLACK_ID                                    16     5.2155E+35
BLACK_ID                                    17     5.2662E+35
BLACK_ID                                    18     5.3169E+35
BLACK_ID                                    19     5.3193E+35
BLACK_ID                                    20     5.3686E+35
BLACK_ID                                    21     5.3719E+35
BLACK_ID                                    22     5.4198E+35
BLACK_ID                                    23     5.4206E+35
BLACK_ID                                    24     5.4214E+35
BLACK_ID                                    25     5.4224E+35
BLACK_ID                                    26     5.4238E+35
BLACK_ID                                    27     5.4246E+35
BLACK_ID                                    28     5.4743E+35
BLACK_ID                                    29     5.5244E+35
BLACK_ID                                    30     5.5252E+35
BLACK_ID                                    31     5.5252E+35
BLACK_ID                                    32     5.5272E+35
BLACK_ID                                    33     5.5277E+35
BLACK_ID                                    34     5.5285E+35
BLACK_ID                                    35     5.5763E+35
BLACK_ID                                    36     5.6274E+35
BLACK_ID                                    37     5.6291E+35
BLACK_ID                                    38     5.6291E+35
BLACK_ID                                    39     5.6291E+35
BLACK_ID                                    40     5.6291E+35
BLACK_ID                                    42     5.6311E+35
BLACK_ID                                    43     5.6794E+35
BLACK_ID                                    44     5.6810E+35
BLACK_ID                                    45     5.6842E+35
BLACK_ID                                    46     5.7351E+35
BLACK_ID                                    47     5.8359E+35
BLACK_ID                                    48     5.8887E+35
BLACK_ID                                    49     5.8921E+35
BLACK_ID                                    50     5.9430E+35
BLACK_ID                                    51     5.9913E+35
BLACK_ID                                    52     5.9923E+35
BLACK_ID                                    53     5.9923E+35
BLACK_ID                                    54     5.9931E+35
BLACK_ID                                    55     5.9947E+35
BLACK_ID                                    56     5.9959E+35
BLACK_ID                                    57     6.0428E+35
BLACK_ID                                    58     6.0457E+35
BLACK_ID                                    59     6.0477E+35
BLACK_ID                                    60     6.0479E+35
BLACK_ID                                    61     6.1986E+35
BLACK_ID                                    62     6.1986E+35
BLACK_ID                                    63     6.1994E+35
BLACK_ID                                    64     6.2024E+35
BLACK_ID                                    65     6.2037E+35
BLACK_ID                                    66     6.2521E+35
BLACK_ID                                    67     6.2546E+35
BLACK_ID                                    68     6.3033E+35
BLACK_ID                                    69     6.3053E+35
BLACK_ID                                    70     6.3069E+35
BLACK_ID                                    71     6.3553E+35
BLACK_ID                                    72     6.3558E+35
BLACK_ID                                    73     6.3562E+35
BLACK_ID                                    74     6.3580E+35
BLACK_ID                                    75     1.1051E+36

然后对比了一下当前的histograms

COLUMN_NAME                    ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACTUAL_VALUE
------------------------------ --------------- -------------- ------------------------------
BLACK_ID                                     0     1.6715E+35
BLACK_ID                                     1     2.5558E+35
BLACK_ID                                     2     2.7619E+35
BLACK_ID                                     3     2.9185E+35
BLACK_ID                                     4     5.0579E+35
BLACK_ID                                     5     5.0589E+35
BLACK_ID                                     6     5.0601E+35
BLACK_ID                                     7     5.1100E+35
BLACK_ID                                     8     5.1601E+35
BLACK_ID                                     9     5.1615E+35
BLACK_ID                                    10     5.1624E+35
BLACK_ID                                    11     5.1628E+35
BLACK_ID                                    12     5.1642E+35
BLACK_ID                                    13     5.2121E+35
BLACK_ID                                    14     5.2131E+35
BLACK_ID                                    15     5.2155E+35
BLACK_ID                                    16     5.2676E+35
BLACK_ID                                    17     5.3175E+35
BLACK_ID                                    18     5.3684E+35
BLACK_ID                                    19     5.3727E+35
BLACK_ID                                    20     5.4197E+35
BLACK_ID                                    21     5.4200E+35
BLACK_ID                                    22     5.4217E+35
BLACK_ID                                    23     5.4238E+35
BLACK_ID                                    24     5.4244E+35
BLACK_ID                                    25     5.4755E+35
BLACK_ID                                    26     5.5252E+35
BLACK_ID                                    27     5.5252E+35
BLACK_ID                                    28     5.5252E+35
BLACK_ID                                    29     5.5283E+35
BLACK_ID                                    30     5.5771E+35
BLACK_ID                                    31     5.6282E+35
BLACK_ID                                    32     5.6291E+35
BLACK_ID                                    33     5.6291E+35
BLACK_ID                                    34     5.6291E+35
BLACK_ID                                    35     5.6299E+35
BLACK_ID                                    36     5.6315E+35
BLACK_ID                                    37     5.6794E+35
BLACK_ID                                    39     5.6816E+35
BLACK_ID                                    40     5.6842E+35
BLACK_ID                                    41     5.7838E+35
BLACK_ID                                    42     5.8877E+35
BLACK_ID                                    43     5.8917E+35
BLACK_ID                                    44     5.9406E+35
BLACK_ID                                    45     5.9909E+35
BLACK_ID                                    46     5.9923E+35
BLACK_ID                                    47     5.9923E+35
BLACK_ID                                    48     5.9946E+35
BLACK_ID                                    49     5.9950E+35
BLACK_ID                                    50     5.9960E+35
BLACK_ID                                    51     5.9960E+35
BLACK_ID                                    52     5.9960E+35
BLACK_ID                                    53     5.9960E+35
BLACK_ID                                    54     5.9960E+35
BLACK_ID                                    55     5.9960E+35
BLACK_ID                                    56     5.9960E+35
BLACK_ID                                    57     6.0436E+35
BLACK_ID                                    58     6.0451E+35
BLACK_ID                                    59     6.0471E+35
BLACK_ID                                    60     6.1986E+35
BLACK_ID                                    61     6.1998E+35
BLACK_ID                                    62     6.2014E+35
BLACK_ID                                    63     6.2037E+35
BLACK_ID                                    64     6.2521E+35
BLACK_ID                                    65     6.2544E+35
BLACK_ID                                    66     6.3024E+35
BLACK_ID                                    67     6.3041E+35
BLACK_ID                                    68     6.3053E+35
BLACK_ID                                    69     6.3073E+35
BLACK_ID                                    70     6.3558E+35
BLACK_ID                                    71     6.3558E+35
BLACK_ID                                    72     6.3558E+35
BLACK_ID                                    73     6.3558E+35
BLACK_ID                                    74     6.3580E+35
BLACK_ID                                    75     1.1160E+36

我们发现原来的histograms值分布比较均匀,而昨天分析后的值分布就有一些地方是集中的,参考上面红色部分。

于是我再做了个 10053  dump对比,昨天分析之前

通过  alter session set events ‘10053 trace name context forever‘;

然后执行相关的sql 再去看trace文件

Table stats    Table: IM_BLACKLIST   Alias: IM_BLACKLIST
  TOTAL ::  CDN: 57477  NBLKS:  374  AVG_ROW_LEN:  38
-- Index stats
  INDEX NAME: IM_BLACKLIST_LID_IND  COL#: 2 
    TOTAL ::  LVLS: 1   #LB: 219  #DK: 17181  LB/K: 1  DB/K: 2  CLUF: 44331
  INDEX NAME: IM_BLACKLIST_PK  COL#: 1 2 
    TOTAL ::  LVLS: 1   #LB: 304  #DK: 57477  LB/K: 1  DB/K: 1  CLUF: 55141
_OPTIMIZER_PERCENT_PARALLEL = 0
***************************************
SINGLE TABLE ACCESS PATH
Column:   BLACK_ID  Col#: 2      Table: IM_BLACKLIST   Alias: IM_BLACKLIST
    NDV: 17181     NULLS: 0         DENS: 5.8204e-05
    NO HISTOGRAM: #BKT: 1 #VAL: 2
  TABLE: IM_BLACKLIST     ORIG CDN: 57477  ROUNDED CDN: 3  CMPTD CDN: 3
  Access path: tsc  Resc:  38  Resp:  38
  Access path: index (equal)
      Index: IM_BLACKLIST_LID_IND
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 4
  IX_SEL:  0.0000e+00  TB_SEL:  5.8204e-05
  Skip scan: ss-sel 0  andv 27259  
    ss cost 27259 
    table io scan cost 38 
  Access path: index (no sta/stp keys)
      Index: IM_BLACKLIST_PK
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 309
  IX_SEL:  1.0000e+00  TB_SEL:  5.8204e-05
  BEST_CST: 4.00  PATH: 4  Degree:  1
***************************************
OPTIMIZER STATISTICS AND COMPUTATIONS
***************************************
GENERAL PLANS
***********************
Join order[1]: IM_BLACKLIST [IM_BLACKLIST] 
Best so far: TABLE#: 0  CST:          4  CDN:          3  BYTES:         75
Final:
  CST: 4  CDN: 3  RSC: 4  RSP: 4  BYTES: 75
  IO-RSC: 4  IO-RSP: 4  CPU-RSC: 0  CPU-RSP: 0

这是昨天分析之后的

SINGLE TABLE ACCESS PATH
Column:   BLACK_ID  Col#: 2      Table: IM_BLACKLIST   Alias: IM_BLACKLIST
    NDV: 17069     NULLS: 0         DENS: 1.4470e-03
    HEIGHT BALANCED HISTOGRAM: #BKT: 75 #VAL: 75
  TABLE: IM_BLACKLIST     ORIG CDN: 57267  ROUNDED CDN: 83  CMPTD CDN: 83
  Access path: tsc  Resc:  38  Resp:  38
  Access path: index (equal)
      Index: IM_BLACKLIST_LID_IND
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 65
  IX_SEL:  0.0000e+00  TB_SEL:  1.4470e-03
  Skip scan: ss-sel 0  andv 27151  
    ss cost 27151 
    table io scan cost 38 
  Access path: index (no sta/stp keys)
      Index: IM_BLACKLIST_PK
  TABLE: IM_BLACKLIST
      RSC_CPU: 0   RSC_IO: 384
  IX_SEL:  1.0000e+00  TB_SEL:  1.4470e-03
  BEST_CST: 38.00  PATH: 2  Degree:  1
***************************************
OPTIMIZER STATISTICS AND COMPUTATIONS
***************************************
GENERAL PLANS
***********************
Join order[1]: IM_BLACKLIST [IM_BLACKLIST] 
Best so far: TABLE#: 0  CST:         38  CDN:         83  BYTES:       2407
Final:
  CST: 38  CDN: 83  RSC: 38  RSP: 38  BYTES: 2407
  IO-RSC: 38  IO-RSP: 38  CPU-RSC: 0  CPU-RSP: 0

我发现分析之前之后全表扫描cost都是38,但是分析之后的根据索引扫描却成为了 65 ,而分析之前是4。

很显然是由于这个查询导致昨天早上分析之后走了全表扫描。于是我再对表进行了分析,只不过这次我没有分析索引字段,而是

analyze table im_blacklist compute  statistics;

这样之后,dbms_histograms 中信息只剩下

COLUMN_NAME                    ENDPOINT_NUMBER ENDPOINT_VALUE ENDPOINT_ACTUAL_VALUE
------------------------------ --------------- -------------- ------------------------------
GMT_CREATE                                   0     2452842.68
GMT_MODIFIED                                 0     2452842.68
LOGIN_ID                                     0     2.5021E+35
BLACK_ID                                     0     1.6715E+35
GMT_CREATE                                   1     2453269.44
GMT_MODIFIED                                 1     2453269.44
LOGIN_ID                                     1     6.3594E+35
BLACK_ID                                     1     1.1160E+36

再执行该sql,就走了索引,从而使得数据库的load降了下来。

分析这整个过程中,我无法知道oracle的走索引cost  65 是怎么计算出来的,当然是跟 histograms有关,但计算方法我却是不清楚的。

这条sql是 bind  var,但是却走了全表扫描,这是由于920中数据库在对bind  var 的sql进行第一次解析的时候去histograms中窥视了数据分布从而根据cost选择了FTS。然后后面继续执行的sql呢,则不论是否该走索引,都走了FTS。这是920这个版本的特性的弊病。也就是说,这有偶然性因素的存在。 但是对于这个表,我做了分析(不分析索引字段)之后不存在histograms,则sql无论如何都走了索引扫描。

转:http://blog.itpub.net/7509771/viewspace-778742/

时间: 2024-11-10 08:27:22

一条sql导致数据库整体性能下降的诊断和解决的全过程的相关文章

影响SQL Server数据库应用性能的几个常见因素

本文转自:http://blogs.msdn.com/b/apgcdsd/archive/2012/01/18/sql-server-2012-1-18.aspx 影响SQL Server数据库应用性能的几个常见因素 性能问题是困扰数据库用户的常见问题之一.经常会有人因为遇到性能问题,质疑SQL Server处理大型数据应用的能力.其实,作为一个在市场上经营了二十多年,出了好几代版本的数据库产品,SQL Server作为一个企业级数据库的能力,是毋庸置疑的.在实际应用中,数据量达到几百GB,甚至

关于反射会导致计算机的性能下降的讨论

在操作Java框架时,通过会用到反射技术,但是反射技术有一个缺点:会导致计算机的性能下降,因为反射占用了计算机的缓存.比如通过反射技术创建某一类的实例时,会先得到该类的构造函数,如果缓存中没有该构造函数,JVM就会创建一个构造函数,并将这个构造函数缓存起来,当下次再创建该构造函数的实例时,就不会去字节码文件中获得构造函数,而是直接通过缓存获得该构造函数,然后再创建实例对象.(可以参看Class类的中newInstance部分的源代码) 网上有这种说法,我觉得是不准确的,期待各位的指正: 反射会导

[翻译]通过使用正确的search arguments来提高SQL Server数据库的性能

原文地址:http://www.sqlpassion.at/archive/2014/04/08/improving-query-performance-by-using-correct-search-arguments/ Improving Query Performance by using correct Search Arguments April 8, 2014 · Klaus Aschenbrenner · 通过使用正确的search arguments来提高数据库的性能 今天的博客

优化设计提高sql类数据库的性能

前言 在一个项目中,技术的统一性是最重要的,数据库的设计则是重点中的重点.NoSQL 是目前最流行的数据库,但是其实用性和功能性远不如sql数据库. 实际很多SQL数据库被诟病的性能问题大多是源于程序员的不合理设计,一个好的设计可以使sql类数据库提高几倍的性能. 1.细节的优化 字段尽量设置为not null . 规范字段大小,越小越好. 表名规范前缀. 一个表尽量储存一个对象. char永远比varchar更高效. timestamp 比datetime小一倍. 避免字串ID. 单条查询最后

SQL Server数据库查询速度慢的原因和解决方法

问 SQL Server数据库查询速度慢的原因有很多,常见的有以下几种: 1.没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷) 2.I/O吞吐量小,形成了瓶颈效应. 3.没有创建计算列导致查询不优化. 4.内存不足 5.网络速度慢 6.查询出的数据量过大(可以采用多次查询,其他的方法降低数据量) 7.锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷) 8.sp_lock,sp_who,活动的用户查看,原因是读写竞争资源. 9.返回了不必要的行和列 10.查询语句不好,没

[单选题].htaccess文件提供了针对每个目录改变配置的方法,但启用.hatccess都会导致服务器的性能下降,以及会导致一些不安全的因素。在下面的指令中,哪一个可以禁止在目录下使用该文件?

AllowOverride None AllowOverride ALL Options Indexes Deny from all 正确答案:

SQL Server 数据库没有有效所有者的三种解决办法

问题:     开发的过程中,操作系统出了问题,决定重装系统.但是没有将SQL Server中的数据库文件分离出来,直接将系统格了.在新系统数据库中附加了数据库文件,一切还算正常,但当打开数据库关系图的时候出现了问题,如下图所示: 解决办法:(三种) 1.右键你的数据库名→属性→文件→所有者→sa;(该方法是从网上找到的,可能不成功) 2.设置兼容级别为90(2005为90,2000为80) (1)代码: USE [master] GO EXEC dbo.sp_dbcmptlevel @dbna

sql server 数据库忘记sa账户密码/ 无管理员账户解决办法

一.计算机超级管理员账户有数据库的管理员权限 用管理员账户登录数据库,直接修改sa账户密码即可. 二.数据库中没有管理员权限的账户 SQL Server 2005/2008提供了针对该情况的更好的灾难恢复方法,无需侵入master数据库,不会对master数据库中的对象和数据(例如登陆帐号,证书等)造成损坏.Windows管理员组的成员现在当SQL Server以单用户模式启动(另外一个名称为维护模式)的情况下对SQL Server有了访问权限. 通过使用单用户模式,SQL Server 200

《SQL Server企业级平台管理实践》读书笔记——SQL Server数据库文件分配方式

原文:<SQL Server企业级平台管理实践>读书笔记--SQL Server数据库文件分配方式 1.文件分配方式以及文件空间检查方法 最常用的检查数据文件和表大小的命令就是:sp_spaceused 此命令有三个缺陷:1.无法直观的看出每个数据文件和日志文件的使用情况.2.这个存储过程依赖SQL Server存储在一些系统视图里的空间使用统计信息计算出的结果,如果没有更新空间统计信息,比如刚刚发生大数据插入,sp_spaceused的结果就不准确.3.这个命令主要是针对普通用户的数据库,对