1430: 小猴打架

1430: 小猴打架

Time Limit: 5 Sec  Memory Limit: 162 MB
Submit: 335  Solved: 241
[Submit][Status]

Description

一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过N-1次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程。

Input

一个整数N。

Output

一行,方案数mod 9999991。

Sample Input

4

Sample Output

96

HINT

50%的数据N<=10^3。
100%的数据N<=10^6。

Source

题解:额。。。这貌似是我除了bzoj1000之外最短的bzoj程序了。。。这个题我首先看到了“小猴打架”这个词,然后又看到了“打一次架后双方成为朋友”,乍一下想到了并查集,可是当我看到有多少种打法时我发现我想多了。。。显然,对于N个节点的生成树,种类有N^(N-2),因为这道题看样子对与打架顺序还要重复计算,所以再来个N!/N,也即是(N-1)!,所以F(x)=(x-1)!*x^(x-2)(呵呵呵呵呵机智的我连快速幂都懒的写了么么哒)

1 const p=9999991;
2 var i,j,k,m,n:longint;l:int64;
3 begin
4      readln(n);l:=1;
5      for i:=1 to n-2 do l:=(l*n) mod p;
6      for i:=(n-1) downto 1 do l:=(l*i) mod p;
7      writeln(l);
8 end.
时间: 2024-10-24 19:36:45

1430: 小猴打架的相关文章

bzoj 1430: 小猴打架

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 634  Solved: 461[Submit][Status][Discuss] Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,

【BZOJ 1430】 1430: 小猴打架 (Prufer数列)

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 625  Solved: 452 Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-

[bzoj1430]小猴打架_prufer序列

小猴打架 bzoj-1430 题目大意:题目链接. 注释:略. 想法: 我们发现打架的情况就是一棵树. 我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序. 一共$n$个节点我们发现数的形态一共有$n^{n-2}$种. 所以答案就是$n^{n-2}\cdot (n-1)!$. Code: #include <iostream> #include <cstdio> #include <cstring> #include <algorithm&g

「Luogu4430」小猴打架

「Luogu4430」小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. 输入输出格式 输入格式: 一个整数N. 输出格式: 一行,方案

bzoj1430 小猴打架

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Input 一个整数N. Output 一行,方案数mod 9999991. S

[BZOJ1430] 小猴打架 (数学)

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Input 一个整数N. Output 一行,方案数mod 9999991. S

【prufer编码】BZOJ1430 小猴打架

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Solution 有一种神奇的prufer码,这种码和一棵树一一对应. 由树转码

【BZOJ】【1430】小猴打架

排列组合 蛮逗的…… 这题题干描述的就一股浓浓的Kruskal的气息……很容易就想到是求一个n个点的完全图的生成树个数,然后由于有序,再乘一个n-1的排列数(n-1条边的全排列)即(n-1)! 但是我一下就卡在了 完全图的生成树个数这个地方……怎么也想不出来……后来看了题解,原来这是一个奇葩的结论:[n^(n-2)] 好吧剩下的就是水了……完全无压力…… Cayley公式 1 /***********************************************************

洛谷——P1125 笨小猴

https://www.luogu.org/problem/show?pid=1125 题目描述 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设maxn是单词中出现次数最多的字母的出现次数,minn是单词中出现次数最少的字母的出现次数,如果maxn-minn是一个质数,那么笨小猴就认为这是个Lucky Word,这样的单词很可能就是正确的答案. 输入输出格式 输入格式: 输入文件