Hadoop2.7.3+Spark2.1.0完全分布式集群搭建过程

1.选取三台服务器(CentOS系统64位)

  114.55.246.88 主节点

  114.55.246.77 从节点

  114.55.246.93 从节点

之后的操作如果是用普通用户操作的话也必须知道root用户的密码,因为有些操作是得用root用户操作。如果是用root用户操作的话就不存在以上问题。

  我是用root用户操作的。

2.修改hosts文件

  修改三台服务器的hosts文件。

  vi /etc/hosts

  在原文件的基础最后面加上:

114.55.246.88 Master
114.55.246.77 Slave1
114.55.246.93 Slave2

  修改完成后保存执行如下命令。

  source /etc/hosts

3.ssh无密码验证配置

  3.1安装和启动ssh协议

  我们需要两个服务:ssh和rsync。

  可以通过下面命令查看是否已经安装:

  rpm -qa|grep openssh

  rpm -qa|grep rsync

  如果没有安装ssh和rsync,可以通过下面命令进行安装:

  yum install ssh (安装ssh协议)

  yum install rsync (rsync是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件)

  service sshd restart (启动服务)

  3.2 配置Master无密码登录所有Salve

  配置Master节点,以下是在Master节点的配置操作。

  1)在Master节点上生成密码对,在Master节点上执行以下命令:

  ssh-keygen -t rsa -P ‘‘

  生成的密钥对:id_rsa和id_rsa.pub,默认存储在"/root/.ssh"目录下。

  2)接着在Master节点上做如下配置,把id_rsa.pub追加到授权的key里面去。

  cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

  3)修改ssh配置文件"/etc/ssh/sshd_config"的下列内容,将以下内容的注释去掉:

  RSAAuthentication yes # 启用 RSA 认证

  PubkeyAuthentication yes # 启用公钥私钥配对认证方式

  AuthorizedKeysFile .ssh/authorized_keys # 公钥文件路径(和上面生成的文件同)

  4)重启ssh服务,才能使刚才设置有效。

  service sshd restart

  5)验证无密码登录本机是否成功。

  ssh localhost

  6)接下来的就是把公钥复制到所有的Slave机器上。使用下面的命令进行复制公钥:

  scp /root/.ssh/id_rsa.pub [email protected]:/root/

  scp /root/.ssh/id_rsa.pub [email protected]:/root/

  

  接着配置Slave节点,以下是在Slave1节点的配置操作。

  1)在"/root/"下创建".ssh"文件夹,如果已经存在就不需要创建了。

  mkdir /root/.ssh

  2)将Master的公钥追加到Slave1的授权文件"authorized_keys"中去。

  cat /root/id_rsa.pub >> /root/.ssh/authorized_keys

  3)修改"/etc/ssh/sshd_config",具体步骤参考前面Master设置的第3步和第4步。

  4)用Master使用ssh无密码登录Slave1

  ssh 114.55.246.77

  5)把"/root/"目录下的"id_rsa.pub"文件删除掉。

  rm –r /root/id_rsa.pub

  重复上面的5个步骤把Slave2服务器进行相同的配置。

  3.3 配置所有Slave无密码登录Master

  以下是在Slave1节点的配置操作。

  1)创建"Slave1"自己的公钥和私钥,并把自己的公钥追加到"authorized_keys"文件中,执行下面命令:

  ssh-keygen -t rsa -P ‘‘

  cat /root/.ssh/id_rsa.pub >> /root/.ssh/authorized_keys

  2)将Slave1节点的公钥"id_rsa.pub"复制到Master节点的"/root/"目录下。

  scp /root/.ssh/id_rsa.pub [email protected]:/root/

  

  以下是在Master节点的配置操作。

  1)将Slave1的公钥追加到Master的授权文件"authorized_keys"中去。

  cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

  2)删除Slave1复制过来的"id_rsa.pub"文件。

  rm –r /root/id_rsa.pub

  配置完成后测试从Slave1到Master无密码登录。

  ssh 114.55.246.88

  按照上面的步骤把Slave2和Master之间建立起无密码登录。这样,Master能无密码验证登录每个Slave,每个Slave也能无密码验证登录到Master。

4.安装基础环境(JAVA和SCALA环境)

  4.1 Java1.8环境搭建

  1)下载jdk-8u121-linux-x64.tar.gz解压

  tar -zxvf jdk-8u121-linux-x64.tar.gz

  2)添加Java环境变量,在/etc/profile中添加:

export JAVA_HOME=/usr/local/jdk1.8.0_121
PATH=$JAVA_HOME/bin:$PATH
CLASSPATH=.:$JAVA_HOME/lib/rt.jar
export JAVA_HOME PATH CLASSPATH

  3)保存后刷新配置

  source /etc/profile

  4.2 Scala2.11.8环境搭建

  1)下载scala安装包scala-2.11.8.rpm安装

  rpm -ivh scala-2.11.8.rpm

  2)添加Scala环境变量,在/etc/profile中添加:

export SCALA_HOME=/usr/share/scala
export PATH=$SCALA_HOME/bin:$PATH

  3)保存后刷新配置

  source /etc/profile

5.Hadoop2.7.3完全分布式搭建

  以下是在Master节点操作:

  1)下载二进制包hadoop-2.7.3.tar.gz

  2)解压并移动到相应目录,我习惯将软件放到/opt目录下,命令如下:

  tar -zxvf hadoop-2.7.3.tar.gz

  mv hadoop-2.7.3 /opt

  3)修改相应的配置文件。

  修改/etc/profile,增加如下内容:

 export HADOOP_HOME=/opt/hadoop-2.7.3/
 export PATH=$PATH:$HADOOP_HOME/bin
 export PATH=$PATH:$HADOOP_HOME/sbin
 export HADOOP_MAPRED_HOME=$HADOOP_HOME
 export HADOOP_COMMON_HOME=$HADOOP_HOME
 export HADOOP_HDFS_HOME=$HADOOP_HOME
 export YARN_HOME=$HADOOP_HOME
 export HADOOP_ROOT_LOGGER=INFO,console
 export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
 export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"

  修改完成后执行:

  source /etc/profile

  修改$HADOOP_HOME/etc/hadoop/hadoop-env.sh,修改JAVA_HOME 如下:

  export JAVA_HOME=/usr/local/jdk1.8.0_121

  

  修改$HADOOP_HOME/etc/hadoop/slaves,将原来的localhost删除,改成如下内容:

Slave1
Slave2

  

  修改$HADOOP_HOME/etc/hadoop/core-site.xml

<configuration>
      <property>
          <name>fs.defaultFS</name>
          <value>hdfs://Master:9000</value>
      </property>
      <property>
         <name>io.file.buffer.size</name>
         <value>131072</value>
     </property>
     <property>
          <name>hadoop.tmp.dir</name>
          <value>/opt/hadoop-2.7.3/tmp</value>
     </property>
</configuration>

  

  修改$HADOOP_HOME/etc/hadoop/hdfs-site.xml

<configuration>
    <property>
      <name>dfs.namenode.secondary.http-address</name>
      <value>Master:50090</value>
    </property>
    <property>
      <name>dfs.replication</name>
      <value>2</value>
    </property>
    <property>
      <name>dfs.namenode.name.dir</name>
      <value>file:/opt/hadoop-2.7.3/hdfs/name</value>
    </property>
    <property>
      <name>dfs.datanode.data.dir</name>
      <value>file:/opt/hadoop-2.7.3/hdfs/data</value>
    </property>
</configuration>

  复制template,生成xml,命令如下:

  cp mapred-site.xml.template mapred-site.xml

  修改$HADOOP_HOME/etc/hadoop/mapred-site.xml

<configuration>
 <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
  </property>
  <property>
          <name>mapreduce.jobhistory.address</name>
          <value>Master:10020</value>
  </property>
  <property>
          <name>mapreduce.jobhistory.address</name>
          <value>Master:19888</value>
  </property>
</configuration>

  修改$HADOOP_HOME/etc/hadoop/yarn-site.xml

<configuration>
     <property>
         <name>yarn.nodemanager.aux-services</name>
         <value>mapreduce_shuffle</value>
     </property>
     <property>
         <name>yarn.resourcemanager.address</name>
         <value>Master:8032</value>
     </property>
     <property>
         <name>yarn.resourcemanager.scheduler.address</name>
         <value>Master:8030</value>
     </property>
     <property>
         <name>yarn.resourcemanager.resource-tracker.address</name>
         <value>Master:8031</value>
     </property>
     <property>
         <name>yarn.resourcemanager.admin.address</name>
         <value>Master:8033</value>
     </property>
     <property>
         <name>yarn.resourcemanager.webapp.address</name>
         <value>Master:8088</value>
     </property>
</configuration>

  4)复制Master节点的hadoop文件夹到Slave1和Slave2上。

  scp -r /opt/hadoop-2.7.3 [email protected]:/opt

  scp -r /opt/hadoop-2.7.3 [email protected]:/opt

  5)在Slave1和Slave2上分别修改/etc/profile,过程同Master一样。

  6)在Master节点启动集群,启动之前格式化一下namenode:

  hadoop namenode -format

  启动:

  /opt/hadoop-2.7.3/sbin/start-all.sh

  至此hadoop的完全分布式环境搭建完毕。

  

  7)查看集群是否启动成功:

  jps

  Master显示:

  SecondaryNameNode

  ResourceManager

  NameNode

  

  Slave显示:

  NodeManager

  DataNode

6.Spark2.1.0完全分布式环境搭建

  以下操作都在Master节点进行。

  1)下载二进制包spark-2.1.0-bin-hadoop2.7.tgz

  2)解压并移动到相应目录,命令如下:

  tar -zxvf spark-2.1.0-bin-hadoop2.7.tgz

  mv hadoop-2.7.3 /opt

  3)修改相应的配置文件。

  修改/etc/profie,增加如下内容:

export SPARK_HOME=/opt/spark-2.1.0-bin-hadoop2.7/
export PATH=$PATH:$SPARK_HOME/bin

  

  复制spark-env.sh.template成spark-env.sh

  cp spark-env.sh.template spark-env.sh

  修改$SPARK_HOME/conf/spark-env.sh,添加如下内容:

export JAVA_HOME=/usr/local/jdk1.8.0_121
export SCALA_HOME=/usr/share/scala
export HADOOP_HOME=/opt/hadoop-2.7.3
export HADOOP_CONF_DIR=/opt/hadoop-2.7.3/etc/hadoop
export SPARK_MASTER_IP=114.55.246.88
export SPARK_MASTER_HOST=114.55.246.88
export SPARK_LOCAL_IP=114.55.246.88
export SPARK_WORKER_MEMORY=1g
export SPARK_WORKER_CORES=2
export SPARK_HOME=/opt/spark-2.1.0-bin-hadoop2.7
export SPARK_DIST_CLASSPATH=$(/opt/hadoop-2.7.3/bin/hadoop classpath)

  复制slaves.template成slaves

  cp slaves.template slaves

  修改$SPARK_HOME/conf/slaves,添加如下内容:

Master
Slave1
Slave2

  4)将配置好的spark文件复制到Slave1和Slave2节点。

  scp /opt/spark-2.1.0-bin-hadoop2.7 [email protected]:/opt

scp /opt/spark-2.1.0-bin-hadoop2.7 [email protected]:/opt

  5)修改Slave1和Slave2配置。

  在Slave1和Slave2上分别修改/etc/profile,增加Spark的配置,过程同Master一样。

  在Slave1和Slave2修改$SPARK_HOME/conf/spark-env.sh,将export SPARK_LOCAL_IP=114.55.246.88改成Slave1和Slave2对应节点的IP。

  6)在Master节点启动集群。

  /opt/spark-2.1.0-bin-hadoop2.7/sbin/start-all.sh

  7)查看集群是否启动成功:

  jps

  Master在Hadoop的基础上新增了:

  Master

  

  Slave在Hadoop的基础上新增了:

  Worker

  

时间: 2024-12-21 08:57:05

Hadoop2.7.3+Spark2.1.0完全分布式集群搭建过程的相关文章

分布式实时日志系统(四) 环境搭建之centos 6.4下hbase 1.0.1 分布式集群搭建

一.hbase简介 HBase是一个开源的非关系型分布式数据库(NoSQL),它参考了谷歌的BigTable建模,实现的编程语言为 Java.它是Apache软件基金会的Hadoop项目的一部分,运行于HDFS文件系统之上,为 Hadoop 提供类似于BigTable 规模的服务.因此,它可以容错地存储海量稀疏的数据.HBase在列上实现了BigTable论文提到的压缩算法.内存操作和布隆过滤器.HBase的表能够作为MapReduce任务的输入和输出,可以通过Java API来存取数据,也可以

CentOS7+Hadoop2.7.2(HA高可用+Federation联邦)+Hive1.2.1+Spark2.1.0 完全分布式集群安装

1       VM网络配置... 3 2       CentOS配置... 5 2.1             下载地址... 5 2.2             激活网卡... 5 2.3             SecureCRT. 5 2.4             修改主机名... 6 2.5             yum代理上网... 7 2.6             安装ifconfig. 8 2.7             wget安装与代理... 8 2.8       

超详细从零记录Hadoop2.7.3完全分布式集群部署过程

超详细从零记录Ubuntu16.04.1 3台服务器上Hadoop2.7.3完全分布式集群部署过程.包含,Ubuntu服务器创建.远程工具连接配置.Ubuntu服务器配置.Hadoop文件配置.Hadoop格式化.启动.(首更时间2016年10月27日) 主机名/hostname IP 角色 hadoop1 192.168.193.131 ResourceManager/NameNode/SecondaryNameNode hadoop2 192.168.193.132 NodeManager/

redis3.0.2 分布式集群安装详细步骤

redis3.0.2 分布式集群安装详细步骤 --(centos5.8 X64系统) 版本历史 时间 版本 说明 编写者 2015-06-5 1.0 redis3.0.2 分布式集群安装详细步骤 csc 一: redis cluster介绍篇 1:redis cluster的现状 目前redis支持的cluster特性(已亲测): 1):节点自动发现 2):slave->master 选举,集群容错 3):Hot resharding:在线分片 4):进群管理:cluster xxx 5):基于

GaussDB T 1.0.2分布式集群部署故障总结

之前安装GaussDB T 1.0.2分布式集群的时候,安装过程中会报segmentation fault错误,如下: [[email protected] ~]$ gs_install -X /mnt/Huawei/db/clusterconfig.xml Parsing the configuration file. Check preinstall on every node. Successfully checked preinstall on every node. Creating

Hadoop完全分布式集群搭建

Hadoop的运行模式 Hadoop一般有三种运行模式,分别是: 单机模式(Standalone Mode),默认情况下,Hadoop即处于该模式,使用本地文件系统,而不是分布式文件系统.,用于开发和调试. 伪分布式模式(Pseudo Distrubuted Mode),使用的是分布式文件系统,守护进程运行在本机机器,模拟一个小规模的集群,在一台主机模拟多主机,适合模拟集群学习. 完全分布式集群模式(Full Distributed Mode),Hadoop的守护进程运行在由多台主机搭建的集群上

基于Hadoop的数据分析综合管理平台之Hadoop、HBase完全分布式集群搭建

能够将热爱的技术应用于实际生活生产中,是做技术人员向往和乐之不疲的事. 现将前期手里面的一个项目做一个大致的总结,与大家一起分享.交流.进步.项目现在正在线上运行,项目名--基于Hadoop的数据分析综合管理平台. 项目流程整体比较清晰,爬取数据(txt文本)-->数据清洗-->文本模型训练-->文本分类-->热点话题发现-->报表"实时"展示,使用到的技术也是当今互联网公司常用的技术:Hadoop.Mahout.HBase.Spring Data Had

分布式实时日志系统(一)环境搭建之 Jstorm 集群搭建过程/Jstorm集群一键安装部署

最近公司业务数据量越来越大,以前的基于消息队列的日志系统越来越难以满足目前的业务量,表现为消息积压,日志延迟,日志存储日期过短,所以,我们开始着手要重新设计这块,业界已经有了比较成熟的流程,即基于流式处理,采用 flume 收集日志,发送到 kafka 队列做缓冲,storm 分布式实时框架进行消费处理,短期数据落地到 hbase.mongo中,长期数据进入 hadoop 中存储. 接下来打算将这其间所遇到的问题.学习到的知识记录整理下,作为备忘,作为分享,带给需要的人. 淘宝开源了许多产品组件

Storm分布式集群搭建

Storm分布式集群搭建 1.解压Storm压缩文件 [[email protected] software]# tar -zxf apache-storm-0.10.0.tar.gz -C /opt/modules [[email protected] software]# cd /opt/modules [[email protected] modules]# mv apache-storm-0.10.0 storm-0.10.0 2.配置Storm的配置文件 部署依赖环境 Java 6+