题目链接:hdu 4915 Parenthese sequence
题目大意:给定一个序列,由(,),?组成?可以表示(或者),问说有一种、多种或者不存在匹配。
解题思路:从左向右,从右向左,分别维护左括号和右括号可能的情况,区间上下界。如果过程中出现矛盾,则为None,否则要判断唯一解还是多解。枚举每个问号的位置,假设该问号可为左右括号,则有多解。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1e6+5;
char s[maxn];
int n, l[maxn][2], r[maxn][2];
bool check (int x) {
int ldown = l[x-1][0] + 1;
int lup = l[x-1][1] + 1;
if (ldown > r[x+1][1] || lup < r[x+1][0])
return false;
int rdown = r[x+1][0] + 1;
int rup = r[x+1][1] + 1;
if (rdown > l[x-1][1] || rup < l[x-1][0])
return false;
return true;
}
int judge () {
n = strlen(s+1);
if (n&1)
return 0;
memset(l[0], 0, sizeof(l[0]));
memset(r[n+1], 0, sizeof(r[n+1]));
for (int i = 1; i <= n; i++) {
if (s[i] == ‘(‘) {
l[i][0] = l[i-1][0] + 1;
l[i][1] = l[i-1][1] + 1;
} else if (s[i] == ‘)‘) {
if (l[i-1][1] == 0)
return 0;
l[i][0] = (l[i-1][0] == 0 ? l[i-1][0] + 2 : l[i-1][0]) - 1;
l[i][1] = l[i-1][1] - 1;
} else {
l[i][0] = (l[i-1][0] == 0 ? l[i-1][0] + 2 : l[i-1][0]) - 1;
l[i][1] = l[i-1][1] + 1;
}
}
for (int i = n; i; i--) {
if (s[i] == ‘)‘) {
r[i][0] = r[i+1][0] + 1;
r[i][1] = r[i+1][1] + 1;
} else if (s[i] == ‘(‘) {
if (r[i+1][1] == 0)
return 0;
r[i][0] = (r[i+1][0] == 0 ? r[i+1][0] + 2 : r[i+1][0]) - 1;
r[i][1] = r[i+1][1] - 1;
} else {
r[i][0] = (r[i+1][0] == 0 ? r[i+1][0] + 2 : r[i+1][0]) - 1;
r[i][1] = r[i+1][1] + 1;
}
}
for (int i = 1; i <= n; i++)
if (s[i] == ‘?‘ && check(i))
return 2;
return 1;
}
int main () {
while (scanf("%s", s+1) == 1) {
int flag = judge();
if (flag == 2)
printf("Many\n");
else if (flag == 1)
printf("Unique\n");
else
printf("None\n");
}
return 0;
}
hdu 4915 Parenthese sequence(高效)
时间: 2024-10-07 07:16:17