word2vec原理

http://www.hankcs.com/nlp/word2vec.html

http://www.cnblogs.com/peghoty/p/3857839.html

word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单、高效,因此引起了很多人的关注。由于 word2vec 的作者 Tomas Mikolov 在两篇相关的论文 [3,4] 中并没有谈及太多算法细节,因而在一定程度上增加了这个工具包的神秘感。一些按捺不住的人于是选择了通过解剖源代码的方式来一窥究竟。

第一次接触 word2vec 是 2013 年的 10 月份,当时读了复旦大学郑骁庆老师发表的论文[7],其主要工作是将 SENNA 的那套算法([8])搬到中文场景。觉得挺有意思,于是做了一个实现(可参见[20]),但苦于其中字向量的训练时间太长,便选择使用 word2vec 来提供字向量,没想到中文分词效果还不错,立马对 word2vec 刮目相看了一把,好奇心也随之增长。

后来,陆陆续续看到了 word2vec 的一些具体应用,而 Tomas Mikolov 团队本身也将其推广到了句子和文档([6]),因此觉得确实有必要对 word2vec 里的算法原理做个了解,以便对他们的后续研究进行追踪。于是,沉下心来,仔细读了一回代码,算是基本搞明白里面的做法了。第一个感觉就是,“明明是个很简单的浅层结构,为什么会被那么多人沸沸扬扬地说成是 Deep Learning 呢?”

解剖 word2vec 源代码的过程中,除了算法层面的收获,其实编程技巧方面的收获也颇多。既然花了功夫来读代码,还是把理解到的东西整理成文,给有需要的朋友提供点参考吧。

在整理本文的过程中, 和深度学习群的群友@北流浪子([15,16])进行了多次有益的讨论,在此表示感谢。另外,也参考了其他人的一些资料,都列在参考文献了,在此对他们的工作也一并表示感谢。

时间: 2024-12-13 11:18:05

word2vec原理的相关文章

word2vec原理推导

word2vec作为神经概率语言模型的输入,其本身其实是神经概率模型的副产品,是为了通过神经网络学习某个语言模型而产生的中间结果.具体来说,“某个语言模型”指的是“CBOW”和“Skip-gram”.具体学习过程会用到两个降低复杂度的近似方法——Hierarchical Softmax或Negative Sampling.两个模型乘以两种方法,一共有四种实现. 一.CBOW 1.一个单词上下文 2.参数更新 3.多个单词上下文 二.Skip-gram 1.网络结构 2.参数更新 三.优化 原始的

Word2Vec原理及代码

一.分布式词表示(Distributed Represantation) Word2Vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,具体思想可由Tomas Mikolov的两篇论文一探究竟.此文是我对Word2Vec学习的总结.分布式词表示使用低维.稠密.连续的向量来表示词.它们通过“有指导”的方法直接学习词向量,也称为词嵌入(Word Embedding).它的发展历程由最初的LSA.LDA.NNLM发展到后来的诸如RNNLM.Word2Ve

机器学习算法实现解析——word2vec源码解析

在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理",掌握如下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CBOW模型和Skip-gram模型的网络结构 Hierarchical Softmax和Negative Sampling的训练方法 Hierarchical Softmax与Huffman树的关系 有了如上的一些概念,接下来就可以去读word2vec的源码.在源码的解析过程中,对于基础知识部分只会做简单的介绍,而不会做太多的推导

用gensim学习word2vec

在word2vec原理篇中,我们对word2vec的两种模型CBOW和Skip-Gram,以及两种解法Hierarchical Softmax和Negative Sampling做了总结.这里我们就从实践的角度,使用gensim来学习word2vec. 1. gensim安装与概述 gensim是一个很好用的Python NLP的包,不光可以用于使用word2vec,还有很多其他的API可以用.它封装了google的C语言版的word2vec.当然我们可以可以直接使用C语言版的word2vec来

机器学习算法实现解析——word2vec源代码解析

在阅读本文之前,建议首先阅读"简单易学的机器学习算法--word2vec的算法原理"(眼下还没公布).掌握例如以下的几个概念: 什么是统计语言模型 神经概率语言模型的网络结构 CBOW模型和Skip-gram模型的网络结构 Hierarchical Softmax和Negative Sampling的训练方法 Hierarchical Softmax与Huffman树的关系 有了如上的一些概念,接下来就能够去读word2vec的源代码. 在源代码的解析过程中,对于基础知识部分仅仅会做简

转:fastText原理及实践(达观数据王江)

http://www.52nlp.cn/fasttext 1条回复 本文首先会介绍一些预备知识,比如softmax.ngram等,然后简单介绍word2vec原理,之后来讲解fastText的原理,并着手使用keras搭建一个简单的fastText分类器,最后,我们会介绍fastText在达观数据的应用. NO.1预备知识1 Softmax回归 Softmax回归(Softmax Regression)又被称作多项逻辑回归(multinomial logistic regression),它是逻

word2vec 理论与实践

导读 本文简单的介绍了Google 于 2013 年开源推出的一个用于获取 word vector 的工具包(word2vec),并且简单的介绍了其中的两个训练模型(Skip-gram,CBOW),以及两种加速的方法(Hierarchical Softmax,Negative Sampling). 一 .word2vec word2vec最初是由Tomas Mikolov 2013年在ICLR发表的一篇文章[Efficient Estimation of Word Representations

Python gensim库word2vec的使用

ip install gensim安装好库后,即可导入使用: 1.训练模型定义 from gensim.models import Word2Vec   model = Word2Vec(sentences, sg=1, size=100,  window=5,  min_count=5,  negative=3, sample=0.001, hs=1, workers=4)   参数解释: 0.sentences是训练所需语料,可通过以下方式进行加载 sentences=word2vec.Te

word2vec高效训练方法

在word2vec原理中讲到如果每个词向量由300个元素组成,并且一个单词表中包含了10000个单词.回想神经网络中有两个权重矩阵——一个在隐藏层,一个在输出层.这两层都具有300 x 10000 = 3,000,000个权重!使用梯度下降法在这种巨大的神经网络下面进行训练是很慢的.并且可能更糟糕的是,你需要大量的训练数据来调整这些权重来避免过拟合.上百万的权重乘以上十亿的训练样本,意味着这个模型将会是一个超级大怪兽!这时就要采用负样本和层级softmax来优化. word2vec的C代码中使用