51NOD1174 区间最大数 && RMQ问题(ST算法)

RMQ问题(区间最值问题Range Minimum/Maximum Query)

    ST算法

    RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i,j之间的最小/大值。如果只有一次询问,那样只有一遍for就可以搞定,但是如果有许多次询问就无法在很快的时间处理出来。在这里介绍一个在线算法。所谓在线算法,是指用户每输入一个查询便马上处理一个查询。该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询。ST(Sparse Table)算法是一个非常有名的在线处理RMQ问题的算法,它可以在O(nlogn)时间内进行预处理,然后在O(1)时间内回答每个查询。

    假设a数组为:

    1, 3, 6, 7, 4, 2, 5

    1.预处理

    设dp[i][j]表示从第i位开始连续2^j个数中的最大值。例如dp[2][1]为第2位数开始连续2个的数的最大值,即6, 4之间的最大值,即mn[2][1] = 4。我们先初始化dp[0...n-1][0]为a数组中的值,之后我们很容易想到递推方程:

    dp[i][j] = max(dp[i][j - 1], dp[i + (1 << j - 1)][j - 1])


20000> 2**14 > 10000
  30000> 2**15 > 40000
  60000> 2**16 > 70000

1 for(int j = 0; j < 20; j ++)
2     for(int i = 1; i + (1 << j) <= n + 1; i ++)
3         dp[i][j] = max(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);

    2.查询

    假设我们需要查询[lo, hi]之间的最值,我们令k = log2(hi-lo+1)

    由于k是 log2(hi-lo+1)向下取整得到的,所以无法完全覆盖lo到hi

    只要保证lo + k 的长度大于lo到hi的长度的1/2即可使用:RMQ[l, r] = min(dp[l][k], dp[r - (1 << k) + 1][k]);

    

    因为不难看出,对于任意长度len,(int)log2(len) ** 2 > len/2

    所以最终代码如下:

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cmath>
 5 using namespace std;
 6 /*
 7 20000> 2**14 > 10000
 8 30000> 2**15 > 40000
 9 60000> 2**16 > 70000
10 */
11 int N[10007];
12
13 int mx[10007][15];
14
15 int main()
16 {
17     int n,q;
18     scanf("%d", &n);
19     for(int i=0;i<n;i++)
20     {
21         scanf("%d", &N[i]);
22     }
23     // -------------------------------
24
25     memset(mx, 0, sizeof(mx));
26     for(int i=0;i<n;i++)
27     {
28         mx[i][0] = N[i];
29     }
30
31     for(int i=1;i<15;i++)
32     {
33         for(int j=0;j+(1<<i)-1<n;j++)
34         {
35             mx[j][i] = max(mx[j][i-1], mx[j+(1<<i-1)][i-1]);
36         }
37     }
38
39     // -------------------------------
40     scanf("%d", &q);
41     int lo, hi;
42     for(int i=0;i<q;i++)
43     {
44         scanf("%d%d", &lo, &hi);
45         int k = (int)log2((double)(hi-lo+1));
46         int ans = max(mx[lo][k], mx[hi-(1<<k)+1][k]);
47         printf("%d\n", ans);
48     }
49 }

当然也可以用线段树解决

原文地址:https://www.cnblogs.com/liwenchi/p/8424103.html

时间: 2024-10-11 22:03:16

51NOD1174 区间最大数 && RMQ问题(ST算法)的相关文章

RMQ的ST算法

·RMQ的ST算法    状态设计:        F[i, j]表示从第i个数起连续2^j个数中的最大值    状态转移方程(二进制思想):        F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])    查询时:        因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),        则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}.

RMQ问题——ST算法

什么是RMQ.ST:RMQ(Range Minimum/Maximum Query)问题,即求区间的最值.可以写一个线段树来实现,但是每次查询的时间复杂度为O(log n),若查询次数过多则可能超时.ST算法是一种离线算法,经过O(nlogn)的预处理后,可以在O(1)的时间复杂度内进行查询,缺点是无法对数据做出修改. 算法实现: 初始化:用dp实现初始化.a[]为原始数据数组f,[i][j]表示从i向后的2j个数字中的最值.显然f[i][0]=a[i]; 我们将f[i][j]分为两段,一段为a

RMQ(ST算法)

RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i,j之间的最小/大值.如果只有一次询问,那样只有一遍for就可以搞定,但是如果有许多次询问就无法在很快的时间处理出来.在这里介绍一个在线算法.所谓在线算法,是指用户每输入一个查询便马上处理一个查询.该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询.ST(Sparse Table

RMQ问题ST算法

1. 概述 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值.这两个问题是在实际应用中经常遇到的问题,下面介绍一下解决这两种问题的比较高效的算法.当然,该问题也可以用线段树(也叫区间树)解决,算法复杂度为:O(N)~O(logN),这里我们暂不介绍. 2.RMQ算法 对于该问题,最容易想到的解决方案是遍历,复杂度是O(n).但当数据量

RMQ问题 ST算法

RMQ是询问某个区间的最大值或最小值的问题,主要求解方法之一ST算法: ST算法其实是倍增思想的产物,等下看代码实现就很明显了 ST算法通常用在要多次询问一些区间的最值的问题中,相比于线段树,它的程序实现更简单,运行速度更快; ST算法没有修改操作(或者说不擅长动态修改) ST算法流程: 预处理:ST算法的原理实际上是动态规划,我们用a数组表示一组数,设\(f[i,j]\)表示从\(a[i]\)到\(a[i+2^j-1]\)这个范围内的最大值,从中间平均分成两部分,即把\(f[i,j]\)分为\

[总结]RMQ问题&amp;ST算法

目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced Lineup 一.ST算法 ST算法(Sparse Table Algorithm)是用于解决RMQ问题(区间最值问题,即Range Maximum/Minimum Question)的一种著名算法. ST算法能在复杂度为\(O(NlogN)\)的预处理后,以\(O(1)\)的复杂度在线处理序列区

RMQ之ST算法模板

1 #include<stdio.h> 2 #include<string.h> 3 #include<iostream> 4 using namespace std; 5 const int N=1e6+111; 6 int Max[N][21],Min[N][21],a[N]; 7 void ST(int *a,int n)//预处理,O(NlogN) 8 { 9 for(int i=1;i<=n;i++) 10 Min[i][0]=Max[i][0]=a[i

RMQ问题ST算法 (还需要进一步完善)

/* RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题.当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的算法效率不够.可以用线段树将算法优化到O(logn)(在线段树中保存线段的最值).不过,Sparse_Table算法才是最好的:它可以在O(nlogn)的预处理以后实现O(1)的查询效率.下面把Sparse Table算法分成预处理和查询两部分来说明(以求最小值为例). 预处理: 预处理使用DP的思

RMQ之ST算法

1 #include <stdio.h> 2 #include <string.h> 3 const int N = 100; 4 int a[N]; 5 int dp[N][33]; 6 inline int min(const int &a, const int &b) 7 { 8 return a < b ? a : b; 9 } 10 11 /* 12 dp[i][j] 表示以i开头的,长度为2^j的区间中的最小值 13 很明显dp[i][0] = a