PYTHON机器学习及实践pdf

下载地址:网盘下载

内容简介  · · · · · ·

本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习、数据挖掘与自然语言处理工具,如Scikitlearn、NLTK、Pandas、gensim、XGBoost、Google Tensorflow等。 全书共分4章。第1章简介篇,介绍机器学习概念与Python编程知识;第2章基础篇,讲述如何使用Scikitlearn作为基础机器学习工具;第3章进阶篇,涉及怎样借助高级技术或者模型进一步提升既有机器学习系统的性能;第4章竞赛篇,以Kaggle平台为对象,帮助读者一步步使用本书介绍过的模型和技巧,完成三项具有代表性的竞赛任务。

下载地址:网盘下载

原文地址:https://www.cnblogs.com/longgg/p/8419352.html

时间: 2024-11-08 07:43:42

PYTHON机器学习及实践pdf的相关文章

《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

<Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代码基于python2.x.不过大部分可以通过修改print()来适应python3.5.x. 提供的代码默认使用 Jupyter Notebook,建议安装Anaconda3. 最好是到https://www.kaggle.com注册账号后,运行下第四章的代码,感受下. 监督学习: 2.1.1分类学习(Cla

Python机器学习及实践 课后小题

目录 第二章 2.3章末小结 @(Python机器学习及实践-----从零开始通往Kaggle竞赛之路) 第二章 2.3章末小结 1 机器学习模型按照使用的数据类型,可分为监督学习和无监督学习两大类. 监督学习主要包括分类和回归的模型. 分类:线性分类,支持向量机(SVM),朴素贝叶斯,k近邻,决策树,集成模型(随机森林(多个决策树)等). 回归:线性回归,支持向量机(SVM),k近邻,回归树,集成模型(随机森林(多个决策树)等). 无监督学习主要包括:数据聚类(k-means)和数据降维(主成

Python机器学习及实践+从零开始通往Kaggle竞赛之路

内容简介 本书面向所有对机器学习与数据挖掘的实践及竞赛感兴趣的读者,从零开始,以Python编程语言为基础,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领读者熟悉并且掌握当下最流行的机器学习.数据挖掘与自然语言处理工具,如Scikitlearn.NLTK.Pandas.gensim.XGBoost.Google Tensorflow等. 全书共分4章.第1章简介篇,介绍机器学习概念与Python编程知识:第2章基础篇,讲述如何使用Scikitlearn作为基础机器学习工具:第3章进阶篇

Python机器学习及实践 知识总结

机器学习中的监督学习的任务重点在于,根据已有的经验知识对未知样本的目标/标记进行预测. 根据目标预测变量的类型不同,我们把监督学习的任务大体分为分类学习与回归预测两类. 监督学习 任务的基本架构流程:1首先准备训练数据 可以是文本 图像 音频等:2然后抽取所需要的特征,形成特征向量:3接着,把这些特征向量连同对应的标记/目标一并送入学习算法中,训练出一个预测模型:4然后,采用同样的特征方法作用于新的测试数据,得到用于测试的数据的特征向量:5最后,使用预测模型对这些待预测的特征向量进行预测并得到结

[python机器学习及实践(6)]Sklearn实现主成分分析(PCA)

1.PCA原理 主成分分析(Principal Component Analysis,PCA), 是一种统计方法.通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. PCA算法: 2.PCA的实现 数据集: 64维的手写数字图像 代码: #coding=utf-8 import numpy as np import pandas as pd from sklearn.decomposition import PCA from matplotlib imp

分享《Python机器学习实践指南》(高清中文版PDF+高清英文版PDF+源代码)

下载:https://pan.baidu.com/s/11dGldpITOoUUJmS9eD5ENw Python机器学习实践指南(高清中文版PDF+高清英文版PDF+源代码) 中文和英文两版对比学习, 带目录书签,可复制粘贴:讲解详细并配有源代码. 其中,高清中文版如图: 原文地址:http://blog.51cto.com/3215120/2301528

分享《Python机器学习实践指南》+PDF+源码+Alexanfer T.Combs+黄申

下载:https://pan.baidu.com/s/1nb-Q7MtQ2dfBbx2Dir-rQA 更多资料分享:http://blog.51cto.com/14087171 Python机器学习实践指南(高清中文版PDF+高清英文版PDF+源代码) 高清中文版PDF,268页,带目录书签,彩色配图,文字可复制粘贴: 高清英文版PDF,324页,带目录书签,彩色配图,文字可复制粘贴: 中文和英文两版对比学习: 讲解详细并配有源代码. 其中,高清中文版如图: 原文地址:http://blog.5

分享《自然语言处理理论与实战》PDF及代码+唐聃+《深入浅出Python机器学习》PDF及代码+段小手+《深度学习实践:计算机视觉》PDF+缪鹏+《最优化理论与算法第2版》高清PDF+习题解答PDF+《推荐系统与深度学习》PDF及代码学习

<自然语言处理理论与实战>高清PDF,362页,带书签目录,文字可以复制:配套源代码.唐聃等著. <大数据智能互联网时代的机器学习和自然语言处理技术>PDF,293页,带书签目录,文字可以复制,彩色配图.刘知远等著.  下载: https://pan.baidu.com/s/1waP6C086-32_Lv0Du3BbNw 提取码: 1ctr <自然语言处理理论与实战>讲述自然语言处理相关学科知识和理论基础,并介绍使用这些知识的应用和工具,以及如何在实际环境中使用它们.由

机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码

机器学习是近年来渐趋热门的一个领域,同时Python 语言经过一段时间的发展也已逐渐成为主流的编程语言之一.<Python机器学习实践指南>结合了机器学习和Python 语言两个热门的领域,通过利用两种核心的机器学习算法来将Python 语言在数据分析方面的优势发挥到极致. 共有10 章.第1 章讲解了Python 机器学习的生态系统,剩余9 章介绍了众多与机器学习相关的算法,包括各类分类算法.数据可视化技术.推荐引擎等,主要包括机器学习在公寓.机票.IPO 市场.新闻源.内容推广.股票市场.