网络最大流算法—Dinic算法及优化

前置知识

网络最大流入门

前言

Dinic在信息学奥赛中是一种最常用的求网络最大流的算法。

它凭借着思路直观,代码难度小,性能优越等优势,深受广大oier青睐

思想

$Dinic$算法属于增广路算法。

它的核心思想是:对于每一个,对其所连的边进行增广,在增广的时候,每次增广“极大流”

这里有别于EK算法,EK算法是从边入手,而Dinic算法是从点入手

在增广的时候,对于一个点连出去的边都尝试进行增广,即多路增广

Dinic算法还引入了分层图这一概念,即对于$i$号节点,用$dis(i)$表示它到源点的距离,并规定,一条边能够被增广,当且仅当它连接的两个点$u,v$满足:$dis(v)=dis(u)+1$,这样可以大大优化其时间复杂度。

实现

有了上面的知识,Dinic实现起来也就比较简单了。

每次BFS构造分层图(注意必须每次都重新构造,因为每次增广之后会删除一些无用的边,也就会删除一些无用的点)

然后从源点开始多路增广

优化

  • 当前弧优化:对于每个点,我们记录下它已经增广了哪些边,当再次回到这个点的时候,无视已经增广过的边,从下一条边开始增广
  • 分层优化(自己xjb起的名字):在进行分层的时候,找到汇点立即退出
  • 剩余量优化(也是自己起的):在进行增广的时候,如果该节点已经没有流量,直接退出

时间复杂度

Dinic算法的理论时间复杂度为$O(n^2*m)$

证明可以看这里

但是!

Dinic算法的性能在比赛中表现的非常优越。

按照集训队大佬ly的说法,我们可以认为Dinic算法的时间复杂度是线性的(比某标号算法不知道高到哪里去了)

代码

题目链接

#include<cstdio>
#include<cstring>
#include<queue>
#define AddEdge(x,y,z) add_edge(x,y,z),add_edge(y,x,0);
using namespace std;
const int MAXN=1e6+1;
const int INF=1e8+10;
inline char nc()
{
    static char buf[MAXN],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
    char c=nc();int x=0,f=1;
    while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=nc();}
    while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=nc();}
    return x*f;
}
int N,M,S,T;
struct node
{
    int v,flow,nxt;
}edge[MAXN*4];
int head[MAXN],cur[MAXN],num=0;//注意这里必须从0开始
inline void add_edge(int x,int y,int z)
{
    edge[num].v=y;
    edge[num].flow=z;
    edge[num].nxt=head[x];
    head[x]=num++;
}
int deep[MAXN],q[MAXN];
inline bool BFS()
{
    memset(deep,0,sizeof(deep));
    deep[S]=1;
    int l=0,r=1;
    q[++l]=S;
    while(l<=r)
    {
        int p=q[l++];
        for(int i=head[p];i!=-1;i=edge[i].nxt)
            if(!deep[edge[i].v]&&edge[i].flow)
            {
                deep[edge[i].v]=deep[p]+1;q[++r]=edge[i].v;
                if(edge[i].v==T) return 1;//当找到汇点的时候直接返回 快30ms
            }
    }
    return deep[T];
}
int DFS(int now,int nowflow)
{
    if(now==T)    return nowflow;
    int totflow=0;//从这个点总共可以增广多少流量
    for(int i=head[now];i!=-1;i=edge[i].nxt)//当前弧优化 快150ms
    {
        if(deep[edge[i].v]==deep[now]+1&&edge[i].flow)//只有满足距离要求与流量要求的点才能进行增广
        {
            int canflow=DFS(edge[i].v,min(nowflow,edge[i].flow));
            edge[i].flow-=canflow;edge[i^1].flow+=canflow;//增广
            totflow+=canflow;
            nowflow-=canflow;
            if(nowflow<=0) break; //当前点已经没有流量  快100ms
        }
    }
    return totflow;
}
void Dinic()
{
    int ans=0;
    while(BFS())//每次构造分层图
    {
        memcpy(cur,head,sizeof(head)); //当前弧优化
        ans+=DFS(S,INF);//进行增广
    }
    printf("%d",ans);
}
int main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    N=read();M=read();S=read();T=read();
    memset(head,-1,sizeof(head));
    for(int i=1;i<=M;i++)
    {
        int x,y,z;
        x=read();y=read();z=read();
        AddEdge(x,y,z);
    }
    Dinic();
    return  0;
}

原文地址:https://www.cnblogs.com/zwfymqz/p/8280746.html

时间: 2024-10-09 15:24:13

网络最大流算法—Dinic算法及优化的相关文章

最大流:Dinic算法

蒟蒻居然今天第一次写网络流 我太弱啦! 最大流问题有很多解法 虽然isap常数巨小 但是连dinic都写挂的本蒟蒻并不会orz 那么我们选用比较好实现的dinic来解决最大流问题 来一段定义:          于是我们就可以这样实现啦! #pragma GCC optimize("O2") #include<iostream> #include<cstdio> #include<cstring> #include<algorithm>

洛谷P3376【模板】网络最大流  Dinic模板

之前的Dinic模板照着刘汝佳写的vector然后十分鬼畜跑得奇慢无比,虽然别人这样写也没慢多少但是自己的就是令人捉急. 改成邻接表之后快了三倍,虽然还是比较慢但是自己比较满意了.虽然一开始ecnt从0开始WA了一发... 之前的码风也十分鬼畜呀缩进只缩1.2格不懂自己怎么想的.. 反正今天就安心划划水. #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #in

网络最大流算法

网络最大流是指在一个网络流图中可以从源点流到汇点的最大的流量.求解网络最大流的常用算法可以分为增广路径算法和预推进算法.其中,预推进算法的理论复杂度优于增广路径算法,但是编码复杂度过高,且效率优势在很多时候并不是很明显,因此,经常使用的算法为增广路径算法.     增广路径算法主要有Fold-Fulkerson算法,Edmonds-Karp算法,Dinic算法,ISAP算法.其中,Fold-Fulkerson 是最基本的增广路径思想,不能算作严格的算法实现. 增广路径     增广路径算法的思想

dinic 算法 基本思想及其模板

“网络流博大精深”—sideman语 一个基本的网络流问题 感谢WHD的大力支持 最早知道网络流的内容便是最大流问题,最大流问题很好理解: 解释一定要通俗! 如右图所示,有一个管道系统,节点{1,2,3,4},有向管道{A,B,C,D,E},即有向图一张. [1]是源点,有无限的水量,[4]是汇点,管道容量如图所示.试问[4]点最大可接收的水的流量? 这便是简单的最大流问题,显然[4]点的最大流量为50 死理性派请注意:流量是单位时间内的,总可以了吧! 然而对于复杂图的最大流方法是什么呢,有E

P3376 网络流-最大流模板题(Dinic+当前弧优化)

(点击此处查看原题) Dinic算法 Dinic算法相对于EK算法,主要区别在于Dinic算法对图实现了分层,使得我们可以用一次bfs,一次dfs使得多条增广路得到增广 普通的Dinic算法已经可以处理绝大多数最大流(最小割)的题目了,但是总是有些题目会卡住普通的Dinic算法,此时我们就需要用到当前弧优化了 当前弧优化简述 不要小看当前弧优化,这个优化效果可是很明显的,就这个例题来说,我用普通的Dinic算法用时约1.7s,而使用了当前弧优化的Dinic算法后,只用了176ms,由此可以看出这

算法模板——Dinic网络最大流 2

实现功能:同Dinic网络最大流 1 这个新的想法源于Dinic费用流算法... 在费用流算法里面,每次处理一条最短路,是通过spfa的过程中就记录下来,然后顺藤摸瓜处理一路 于是在这个里面我的最大流也采用这种模式,这样子有效避免的递归,防止了爆栈么么哒 1 type 2 point=^node; 3 node=record 4 g,w:longint; 5 next,anti:point; 6 end; 7 var 8 i,j,k,l,m,n,s,t,flow:longint; 9 a,e:a

【算法】网络最大流 Dinic

Dinic的大体思路是和EK差不多的(其实很多算法的大体思路都一样),只不过Dinic在每次寻找增广路时先bfs一下,给每个点都加上一个等级,而规定:只有等级相邻的两个点之间才能走,那么在dfs时就会减掉很多无用因此不必要的道路 1 #include<algorithm> 2 #include<iostream> 3 #include<cstring> 4 #include<cstdio> 5 #include<queue> 6 using na

HDU ACM 3572 Task Schedule 网络最大流-&gt;dinic算法

分析: 建图:每个任务和每一天分别看做一个点,添加源和汇点.源点和每个任务连一条边,每天边的容量为完成对应任务所需处理次数.若第i个任务能够在Si至Ei天处理,则由该任务向这些天分别连一条边,容量为1,表示此任务每天只能被处理一次.最后,每一天分别连一条边到汇点,容量为机器数M,即每天可以处理M个任务.若求出的最大流等于所有任务需要处理的次数之和,说明能完成任务:否则,不能. #include<iostream> #include<vector> #include<queue

网络最大流 dinic算法

一句话题意:给出一个网络图,以及其源点和汇点,求出其网络最大流 //dinic算法; //时间复杂度O(V^2E); #include<bits/stdc++.h> #define inf 999999 #define maxn 200000 using namespace std; int n,m,s,t; int ans=0; struct Edge { int to,next,w; }; struct Edge edge[maxn]; int head[maxn],val[maxn],p