Coursera Deep Learning 3 Convolutional Neural Networks - week1

CNN 主要解决 computer vision 问题,同时解决input X 维度太大的问题.

  

  

  

Edge detection example

演示了convolution 的概念

  

下图的 vertical edge 看起来有点厚,但是如果图片远比6x6像素大的话,就会看到效果非常不错.

  

原文地址:https://www.cnblogs.com/mashuai-191/p/8660722.html

时间: 2024-11-02 16:54:24

Coursera Deep Learning 3 Convolutional Neural Networks - week1的相关文章

论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking 论文阅读

写博客好麻烦,每次写到一半就不想写了....前面好几个坑还没填完,这又来写新的了== 老板一句话,直接抛开之前检测的工作,来研究跟踪,这算是研究生阶段严格来说看的第一篇跟踪文章吧,这篇文章号称标志了跟踪也被深度学习攻陷~下面进入正题. 一.简介 1.CNN为什么在跟踪中用的少 为什么CNN兴起那么久了,在这篇文章之前,跟踪领域用CNN做的好文章没咋出现?因为:一是CNN需要大数据来驱动.训练提取特征,对于视频处理来说,并没有那么多的数据:二是针对视觉跟踪的特殊的训练方法还没有.对于第一点很容易理

[CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } li.li2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px &quo

Convolutional Neural Networks from deep learning (assignment 1 from week 1)

Convolutional Neural Networks https://www.coursera.org/learn/convolutional-neural-networks/home/welcome There are still something confuse me! working how to paste the jupyter here.................................................... Convolutional Neur

课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals

Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the dimensionality reduction of a volume in a very deep network Understand and Implement a Residual network Build a deep neural network using Keras Implem

ImageNet?Classification?with?Deep?Convolutional?Neural?Networks?阅读笔记 转载

ImageNet Classification with Deep Convolutional Neural Networks 阅读笔记 (2013-07-06 22:16:36) 转载▼ 标签: deep_learning imagenet hinton 分类: 机器学习 (决定以后每读一篇论文,都将笔记记录于博客上.) 这篇发表于NIPS2012的文章,是Hinton与其学生为了回应别人对于deep learning的质疑而将deep learning用于ImageNet(图像识别目前最大的

ImageNet Classification with Deep Convolutional Neural Networks(转载)

ImageNet Classification with Deep Convolutional Neural Networks 阅读笔记 (决定以后每读一篇论文,都将笔记记录于博客上.) 这篇发表于NIPS2012的文章,是Hinton与其学生为了回应别人对于deep learning的质疑而将deep learning用于ImageNet(图像识别目前最大的数据库)上,最终取得了非常惊人的结果,其结果相对原来的state of the art好了非常多(前5选错误率由25%降低为17%). I

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有

Image Scaling using Deep Convolutional Neural Networks

Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in Palo Alto, California. I worked on machine learning based problems, one of which was Image Upscaling. This post will show some preliminary results, dis